Skip to main content
Log in

Intuitive Expertise and Perceptual Templates

  • Published:
Minds and Machines Aims and scope Submit manuscript

Abstract

We provide the first demonstration of an artificial neural network encoding the perceptual templates that form an important component of the high level strategic understanding developed by experts. Experts have a highly refined sense of knowing where to look, what information is important and what information to ignore. The conclusions these experts reach are of a higher quality and typically made in a shorter amount of time than those of non-experts. Understanding the manifestation of such abilities in terms of both the psychology of expert performance and the underlying neural mechanisms constitutes one of the most challenging problems in the cognitive sciences. Using perceptual templates we show how the amount of contextual information can change significantly even within a given task, the relationship between local and non-local contexts and finally why there is very little correlation between measures of intelligence and level of expertise in many of the most complex tasks performed by humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. See http://senseis.xmp.net/ for an introduction to the game.

  2. There are 19 × 19 = 361 positions on the board, the training vectors and the neurons represent a board as a vector of 361 elements and there are 50 × 50 = 2,500 neurons in each SoM. There is one SoM trained for each of the 361 positions.

  3. Taken from the commercial GoGod database, Winter 2009 version.

References

  • Aarts, H., & Dijksterhuis, A. (2000). Habits as knowledge structures: Automaticity in goal-directed behavior. Journal of Personality and Social Psychology, 78(1), 53.

    Article  Google Scholar 

  • Ambady, N., & Rosenthal, R. (1992). Thin slices of expressive behavior as predictors of interpersonal consequences: A meta-analysis. Psychological Bulletin, 111(2), 256.

    Article  Google Scholar 

  • Atherton, M., Zhuang, J., Bart, W., Hu, X., & He, S. (2003). A functional MRI study of high-level cognition: I. The game of chess. Cognitive Brain Research, 16(1), 26–31.

    Article  Google Scholar 

  • Bar, M. (2004). Visual objects in context. Nature Reviews Neuroscience, 5(8), 617–629.

    Article  MathSciNet  Google Scholar 

  • Bargh, J., & Chartrand, T. (1999). The unbearable automaticity of being. American Psychologist, 54(7), 462.

    Article  Google Scholar 

  • Bargh, J., & Ferguson, M. (2000). Beyond behaviorism: On the automaticity of higher mental processes. Psychological Bulletin, 126(6), 925.

    Article  Google Scholar 

  • Bilalic, M., McLeod, P., & Gobet, F. (2007). Does chess need intelligence?—A study with young chess players. Intelligence, 35(5), 457–470.

    Article  Google Scholar 

  • Bouzy, B., & Cazenave, T. (2001). Computer go: An AI oriented survey. Artificial Intelligence, 132(1), 39–103.

    Article  MathSciNet  MATH  Google Scholar 

  • Brady, T., Konkle, T., Alvarez, G., & Oliva, A. (2008). Visual long-term memory has a massive storage capacity for object details. Proceedings of the National Academy of Sciences, 105(38), 14,325.

    Article  Google Scholar 

  • Brockmole, J., Castelhano, M., & Henderson, J. (2006). Contextual cueing in naturalistic scenes: Global and local contexts. Journal of Experimental Psychology: Learning, Memory, and Cognition, 32(4), 699.

    Article  Google Scholar 

  • Bukach, C., Gauthier, I., & Tarr, M. (2006). Beyond faces and modularity: The power of an expertise framework. Trends in Cognitive Sciences, 10(4), 159–166.

    Article  Google Scholar 

  • Chase, W., & Simon, H. (1973). Perception in chess. Cognitive psychology, 4(1), 55–81.

    Article  Google Scholar 

  • Chen, X., Zhang, D., Zhang, X., Li, Z., Meng, X., He, S., et al. (2003). A functional MRI study of high-level cognition: II. The game of go. Cognitive Brain Research, 16(1), 32–37.

    Article  Google Scholar 

  • Chun, M. (2000). Contextual cueing of visual attention. Trends in Cognitive Sciences, 4(5), 170–178.

    Article  Google Scholar 

  • Chun, M., & Jiang, Y. (1998). Contextual cueing: Implicit learning and memory of visual context guides spatial attention. Cognitive Psychology, 36(1), 28–71.

    Article  Google Scholar 

  • Chun, M., & Jiang, Y. (1999). Top-down attentional guidance based on implicit learning of visual covariation. Psychological Science, 10(4), 360.

    Article  Google Scholar 

  • Cleveland, A. (1907). The psychology of chess and of learning to play it. The American Journal of Psychology, 18(3), 269–308.

    Article  Google Scholar 

  • Coricelli, G., & Nagel, R. (2009). Neural correlates of depth of strategic reasoning in medial prefrontal cortex. Proceedings of the National Academy of Sciences, 106(23), 9163.

    Article  Google Scholar 

  • Dosher, B., & Lu, Z. (1998). Perceptual learning reflects external noise filtering and internal noise reduction through channel reweighting. Proceedings of the National Academy of Sciences, 95(23), 13,988.

    Article  Google Scholar 

  • Engle, R., Tuholski, S., Laughlin, J., & Conway, A. (1999). Working memory, short-term memory, and general fluid intelligence: A latent-variable approach. Journal of Experimental Psychology: General, 128(3), 309.

    Article  Google Scholar 

  • Ericsson, K., Krampe, R., & Tesch-Römer, C. (1993). The role of deliberate practice in the acquisition of expert performance. Psychological Review, 100(3), 363.

    Article  Google Scholar 

  • Evans, J. (2008). Dual-processing accounts of reasoning, judgment, and social cognition. Annual Review of Psychology, 59, 255–278.

    Article  Google Scholar 

  • Garrigan, P., & Kellman, P. (2008). Perceptual learning depends on perceptual constancy. Proceedings of the National Academy of Sciences, 105(6), 2248.

    Article  Google Scholar 

  • Gobet, F., & Simon, H. A. (1996). The roles of recognition processes and look-ahead search in time-constrained expert problem solving: Evidence from grand-master-level chess. Psychological Science, 7, 52–55.

    Google Scholar 

  • Gobet, F., Lane, P., Croker, S., Cheng, P., Jones, G., Oliver, I., et al. (2001). Chunking mechanisms in human learning. Trends in Cognitive Sciences, 5(6), 236–243.

    Article  Google Scholar 

  • Gray, J., Chabris, C., & Braver, T. (2003). Neural mechanisms of general fluid intelligence. Nature Neuroscience, 6(3), 316–322.

    Article  Google Scholar 

  • Guid, M., & Bratko, I. (2006). Computer analysis of world chess champions. ICGA Journal, 29(2), 65–73.

    Google Scholar 

  • Harré, M., Bossomaier, T., & Snyder, A. (2011). The development of human expertise in a complex environment. Minds and Machines, 21(3), 449–464.

    Article  Google Scholar 

  • Hoock, J., Lee, C., Rimmel, A., Teytaud, F., Wang, M., & Teytaud, O. (2010). Intelligent agents for the game of Go. Computational Intelligence Magazine, IEEE, 5(4), 28–42.

    Google Scholar 

  • Itoh, K., Kitamura, H., Fujii, Y., & Nakada, T. (2008). Neural substrates for visual pattern recognition learning in Igo. Brain Research, 1227, 162–173.

    Article  Google Scholar 

  • Kane, M., & Engle, R. (2002). The role of prefrontal cortex in working-memory capacity, executive attention, and general fluid intelligence: An individual-differences perspective. Psychonomic Bulletin and Review, 9(4), 637–671.

    Article  Google Scholar 

  • Khaneman, D. (2003). A perspective on judgement and choice. American Psychologist, 58, 697–720.

    Article  Google Scholar 

  • Kiesel, A., Kunde, W., Pohl, C., Berner, M., & Hoffmann, J. (2009). Playing chess unconsciously. Journal of Experimental Psychology: Learning, Memory, and Cognition, 35(1), 292.

    Article  Google Scholar 

  • Kohonen, T. (1982). Clustering, taxonomy, and topological maps of patterns. In Proceedings of 6IPCR: International conference on pattern recognition.

  • Kohonen, T. (1990). The self-organizing map. Proceedings of the IEEE, 78(9), 1464–1480.

    Article  Google Scholar 

  • Kohonen, T. (1993). Physiological interpretation of the self-organizing map algorithm. Neural Networks, 6(7), 895–905.

    Article  Google Scholar 

  • Kohonen, T., & Hari, R. (1999). Where the abstract feature maps of the brain might come from. Trends in Neurosciences, 22(3), 135–139.

    Article  Google Scholar 

  • Lin, J. (1991). Divergence measures based on the shannon entropy. IEEE Transactions on Information Theory, 37(1), 145–151.

    Article  MATH  Google Scholar 

  • Miller, G. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63(2), 81.

    Article  Google Scholar 

  • Neider, M., & Zelinsky, G. (2006). Scene context guides eye movements during visual search. Vision Research, 46(5), 614–621.

    Article  Google Scholar 

  • Oliva, A., & Torralba, A. (2006). Building the gist of a scene: The role of global image features in recognition. Progress in Brain Research, 155, 23–36.

    Article  Google Scholar 

  • Petrov, A., Dosher, B., & Lu, Z. (2005). The dynamics of perceptual learning: an incremental reweighting model. Psychological Review, 112(4), 715.

    Article  Google Scholar 

  • Reingold, E., Charness, N., Schultetus, R., & Stampe, D. (2001). Perceptual automaticity in expert chess players: Parallel encoding of chess relations. Psychonomic Bulletin and Review, 8(3), 504–510.

    Article  Google Scholar 

  • Reitman, J. (1976). Skilled perception in go: Deducing memory structures from inter-response times. Cognitive Psychology, 8(3), 336–356.

    Article  Google Scholar 

  • Ross, P. (2006). The expert mind. Scientific American, 295(2), 64–71.

    Article  Google Scholar 

  • Shannon, C. (1950). Programming a computer for playing chess. Philosophical Magazine, 41(7), 256–275.

    MathSciNet  MATH  Google Scholar 

  • Simon, H., & Barenfeld, M. (1969). Information-processing analysis of perceptual processes in problem solving. Psychological Review, 76(5), 473.

    Article  Google Scholar 

  • Simon, H. A., & Gobet, F. (1996). Templates in chess memory: A mechanism for recalling several boards. Cognitive Psychology, 31, 1–40.

    Google Scholar 

  • Stern, D., Herbrich, R., & Graepel, T. (2006). Bayesian pattern ranking for move prediction in the game of Go. In Proceedings of the 23rd international conference on machine learning, ACM (pp. 873–880).

  • Swindale, N. (2000). How many maps are there in visual cortex?. Cerebral Cortex, 10(7), 633.

    Article  Google Scholar 

  • Torralba, A., Oliva, A., Castelhano, M., & Henderson, J. (2006). Contextual guidance of eye movements and attention in real-world scenes: The role of global features in object search. Psychological Review, 113(4), 766.

    Article  Google Scholar 

  • Tromp, J., & Farnebäck, G. (2007). Combinatorics of Go. Computers and Games, 84–99).

  • Vesanto, J., Himberg, J., Alhoniemi, E., Parhankangas, J., Team, S., & Oy, L. (2000). SOM toolbox for matlab. Techn Ber, Helsinki University of Technology.

Download references

Acknowledgments

This work was supported by ARC grant DP0881829 and by US Air Force grant AOARD104116.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Harré.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harré, M., Snyder, A. Intuitive Expertise and Perceptual Templates. Minds & Machines 22, 167–182 (2012). https://doi.org/10.1007/s11023-011-9264-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11023-011-9264-9

Keywords

Navigation