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Abstract Although the concept of uncertainty is as old as Epicurus’s writings, and
an excellent quantitative theory, with entropy as the measure of uncertainty having
been developed in recent times, there has been little exploration of the qualitative
theory. The purpose of the present paper is to give a qualitative axiomatization of
uncertainty, in the spirit of the many studies of qualitative comparative probability.
The qualitative axioms are fundamentally about the uncertainty of a partition of the
probability space of events. Of course, it is common to speak of the uncertainty, or
randomness, of a random variable, but only the partition defined by the values of the
random variable enter into the definition of uncertainty, not the actual values. It is
straightforward to add axioms for decision making following the general line of
Savage from the 1950s. Indeed, in the spirit of Epicurus, it is really our intuitive
feeling about the uncertainty of the future that motivates much of our thinking about
decisions. Here, the distinction between the concepts of probability and uncertainty
can be made by citing many familiar examples. Without spelling out the technical
details, the axiomatization of qualitative probability with uncertainty as the most
important primitive concept, it is possible to raise a different kind of question about
bounded rationality. This new question is whether or not one should bound the
uncertainty in thinking and investigating any detailed framework of decision
making. Discussion of this point is certainly different from the question of bounding
rationality by not maximizing expected utility. In practice, we naturally bound
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uncertainty in our analysis of decision-making problems. As in the case of for-
mulating an alternative for maximizing expected utility, so is the case of rational
alternatives to maximizing uncertainty. There are several issues to consider. In the
spirit of my other work in qualitative probability, I explore alternatives rather than
attempt to give a definitive argument for one single solution.

Keywords Bounded rationality - Bounded uncertainty - Qualitative probability -
Qualitative independence - Qualitative uncertainty - Entropy

Introduction

The central concern of this article is to develop the concept of bounded uncertainty,
which has been neglected, but should have a significant role in detailed discussions
of bounded rationality. I hope to succeed in this article in explaining what the
concept of bounded uncertainty is and why it i1s important to consider it in any
general theory of bounded rationality.

Before starting a formal development of the concepts to be considered, it seems
desirable to give some examples whose content is easily understood and thus can
serve in expressing the intuitions behind the concept of uncertainty—or, its
equivalent, the concept of information—about which more is said later.

Bill and Mary find a coin in circumstances that suggest the coin might be biased.
They look at each other and say, “Let’s toss the coin a few times to see if it is biased
or fair”. (The coin is fair if about half the tosses turn up heads). Mary says, “O.K.
Let’s flip it 5 times”. Bill responds, “Why 57”7 After a short discussion, Bill
persuades Mary to go a little higher and toss the coin 7 times. Mary looks at him
quizzically and says, “Well, smarty, why not eleven or three or ten tosses?”

At a more complicated level of experimentation, this kind of discussion over
“How many trials?”’ goes on in almost all parts of experimental science, and in
other situations, especially ones of making bets with friends on the outcome of
sporting events. Almost always in these informal settings no systematic calculation
of outcomes is made, by experimenter or friend.

In this discussion I have mentioned two kinds of events: experimental ones, like
coin flipping, which can easily be repeated, and sporting events, which cannot. Here
my interest is in experiments, and I shall restrict myself to them in what follows.

An experiment—should it be a coin-tossing experiment or a more elaborate
one—is designed to confirm a theoretical prediction or just to learn the probability
of a given kind of event, like a coin toss resulting in heads. The experimental
procedures themselves are presumed to have little effect on the probability of
outcomes, although quantum mechanics and several other areas of science provide
exceptions to this rule.

Return to Bill and Mary. “Well,” Mary says, “I don’t know how we measure the
information coming from each trial of an experiment such as coin tossing or
throwing dice, but since the trials are meant to be independent and identical in
structure, the information must add up. So n trials gives us n units of information.”
(Here it is more natural to talk about information than uncertainty.) Bill says, “That
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sounds right. So the more trials we have in an experiment, the more information we
get. So why not just run lots of trials and not argue about how many?” Mary replies,
“That will work for us, but not for expensive scientific trials. For them, we need
some kind of theory, because they cost too much and take too long.”

The rest of this article is devoted to developing the foundations for such a theory.
To begin, I state qualitative axioms of probability in “Qualitative Axioms for
Probability” section. Then, in “Qualitative Axioms of Independence and Uncer-
tainty” section, I state qualitative axioms of independence as well as uncertainty. In
“Qualitative Random-Variable Axioms” section, I state slightly stronger qualitative
random variable axioms using indicator functions of events rather than events
themselves. As part of the development of concepts in these two sections, it is also
necessary to introduce the concept of the qualitative independence of experiments.
Much of the material in the first few sections is meant to be a rapid review of
qualitative axioms about probability concepts taken from the scientific literature.
These sections take material from Suppes (2014), but they also present some new
material.

In “Standard Representation Theorem for Uncertainty” section, I state a
quantitative representation theorem for uncertainty. This theorem is new. The final
section, “Bounded Uncertainty” section, focuses on bounded uncertainty.

Of equal importance is the development of the concept of entropy in “Qualitative
Random-Variable Axioms” section as a measurement of uncertainty, now widely
accepted in the modern theory of information.

Qualitative Axioms for Probability

I begin with standard comparative probability axioms for events. The axioms are
completely qualitative in character. They have a fairly long history in the modern
theory of qualitative probability. Certainly, they were given prominence by de
Finetti (1937/1964, 1974, 1975). Presented below are the five axioms, essentially
those of his original formulation. The relation of qualitative comparative probability
is denoted by the wavy inequality symbol ‘>=,” read ‘at least as probable as.” The
strict binary relation > is defined in the usual way, so A > B iff (1) A >= B and (i1) it
is not the case that B > A. The symbol ‘(%’ denotes the empty set, i.e., the
impossible event, and ‘")’ and ‘U’ are the usual symbols used for intersection and
union of sets. The capital Greek omega, ‘Q),” in Axiom CP4 denotes the set (or
universe) of all possible outcomes.

CP1. If A>=B and B = C, then A > C.

CP2. Either A =B or B = A.

CP3. A= .

CP4. Q> 7.

CPS. fANC=Zand BNC = ¢J,then A U C =B U Ciff A = B.

The only probabilistic concept used in these axioms is the qualitative relation of
event A being at least as probable as event B, i.e., A > B.
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The structures that satisfy these axioms can be simple probability distributions
for finite sets of events. These axioms alone, however, are too weak to prove a
quantitative or numerical probability representation theorem. A counterexample that
decisively shows this is so was given many years ago (Kraft et al. 1959). Later I will
discuss axioms that must be added to these original five in order to prove a
numerical representation theorem. But the task to be focused on here is not the
standard probability representation, but rather the representations of independence
and uncertainty. I turn to this task in the next section.

Qualitative Axioms of Independence and Uncertainty

Before we can consider qualitative axioms of uncertainty, it is necessary to spend
some time on the qualitative axioms of independence. On the one hand, the basic
idea behind these axioms is straightforward. The independence of events in the
theory of information plays the role that the null intersection of events plays in
probability. On the other hand, detailed discussion about qualitative axioms of
independence is not familiar to many people who know well the general theory of
probability.

Presented below is a standard list of qualitative axioms of independence. This list
is by no means unique and is derived from several sources, especially Domotor
(1969, 1970). But it is detailed enough to give a feel for such qualitative axioms.
The notation ‘AL B’ is read ‘Event A is independent of event B.” If A is an event,

then —A denotes the complementary event, so A U —-A = Q (quantitatively, we
expect P(A) + P(-A) =P(Q) = 1).

QI1. AL1Q.

QI2. If A1B, then B1A.

QI3. If ALB, then A1-B.

Q4. IfAIB,AIC,BNC=¢f, ALBUC.

QIS. If A1B,B1C, and A1LBNC, then CLA NB.

Qualitative axioms for uncertainty have only a recent history in the theory of
probability. Fundamentally, the search for such axioms was initiated by the
surprising original work of Claude Shannon on solving problems of coding and
sending messages over channels of limited capacity. Not very long after his first
publication in 1948, the theory of information suggested by his work was given a
clear mathematical representation (in Russian) by Khinchin (1953, 1956). When his
work was translated into English (1957), it was widely read and had a big influence
in the development of the theory of information in the 1950s and 1960s. (Khinchin
treats as equivalent information and uncertainty, and this is now a common view.)

Presented below is a set of five qualitative axioms of uncertainty that match
rather closely the classical qualitative axioms of de Finetti for comparative
probability. Before presenting the qualitative axioms of uncertainty, I need to
introduce a few additional concepts.

Let Q be a nonempty set. A set 7 is called a (finite) partition of Q if n is a
nonempty finite family of sets Py,...,P, such that:
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(1) P;is a subset of Q, foreachi=1,...,n;
() P;# P foreachi=1,...,n;
(1)) P;NP; = J for every i, j with 1 <i<j<n; and
(iv)  The union of all sets P; in 7 is equal to Q, i.e., [J._, Pi = Q.

Adopting language from Kolmogorov (1933/1950), a finite partition = of € 1is
said to be an experiment if every element of =, ie., every P; in m, 1s also an
event. We define an event to be a set that is an element of a given algebra
over Q.

Formally, an algebra of events over £ is a collection .2/ of subsets of (2 satisfying
the following properties:

(1) Qs an element of .o/,
(11) If A is an element of .27, then so is —A; and
(111) If A and B are elements of .27, then so is A UB.

Now to be more precise, an experiment over a given algebra of events .o/ is a
subcollection of ./ that is a finite partition of Q. Let £(2/) denote the set of all
experiments over .2/,

We also need to define the concept of the product of experiments over an
common algebra of events. Set-theoretically, the product ® of partitions 7 and & of
Q, n © & 1s defined as follows:

n®é={C§Q: C#¢@ and C=ANB for some AEnandBeé}.

Observe that for a given an algebra of events .o/ over Q, if 7 and £ are experiments
in £(.o7), then so is their product 7 ® £. It is readily verified that the product ® is
associative, commutative, and idempotent over £(</).

Finally, we need to define the concept of independence for experiments over a
given algebra of events 7. Two experiments w and ¢ in £(.&/) are said to be
independent if every event A from = is independent of any event B from {—that
is, ALB for all A € m and B € £. The same symbol _L is used for independence of
experiments as for events, so n_L¢ just in case 7w is independent of C.

The following qualitative axioms of uncertainty slightly simplify the set of
axioms first introduced in Suppes (2014). I use ‘= ,’ as the symbol for the
uncertainty relation—read ‘at least as uncertain as’—where the relationship
between experiments over a given algebra of events, not events belonging a given
algebra of eventS. As you can see, the subscript ‘u’ is used for the uncertainty

relation between experiments. In Axiom CU3, as well as hereafter, n(Q) denotes the

partition of Q whose only element is the set Q itself, i.e., 7(Q) = {Q} (the reason
for the dot above  will become clear in the next section).

CUL. If n>=,¢ and & »=,9, then m>,.
CU2. Either n>=,¢ or &=, m.
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CU3 T ?u n(Q)
CU4. If nlvY and &1, then n©V =, OV if and only if ==, ¢.

Unfortunately, these three sets of purely qualitative axioms are not strong enough
to prove a numerical representation in terms of a standard probability distribution
over events and (to be discussed later) a standard entropy measure over
experiments.

There are many ways to add further axioms, especially of an Archimedean
character, that are strong enough to prove a standard representation theorem.
Personally, rather than mixing the logical character of the axioms—for example,
formulated in first-order logic or not—I prefer to state all the axioms in terms of
restricted qualitative random variables which naturally arise from the algebra of
interest. The task of establishing a representation theorem for such a system of
axioms is undertaken in the next section.

Qualitative Random-Variable Axioms

Before taking on the main task of this section, we must begin with some formal
remarks about notation and terminology. Given a subset E of a nonempty set €2, let
E be the real-valued function on € such that for all w € Q:

. 1 if w€E;
Elw) = :

0 otherwise.
The function E is called the indicator function for E relative to the set Q. More
generally, an extended indicator function is a sum of indicator functions for subsets
of Q. That is, an extended indicator function relative to  is a real-valued function X
on £ such that for some positive integer n, subsets E;, .. ., E, of Q, and non-negative
integers ki, ..., Kky:

X= En:k,- - E;. (%)
i=1

The possible values of an extended indicator function are non-negative integers, and
the set of possible values is finite. Addition and multiplication of extended indicator
functions are defined pointwise as usual.

For each non-negative integer m, let X~'(m) be the level set of m under X:

X '(m) = {wEQ : X(w)=m}.

Given an algebra .o/ of events over a nonempty set €2, an extended indicator
function X on Q is said to be .«/-measurable if X' (m) € </ for each nonnegative

integer m. A real-valued function X on € is a member of .o/-measurable just in case
it has the form of (x) for some (unique) positive integer n, distinct non-negative

integers ki, . ..,k,, and nonempty sets Ay, ..., A, € o/ such that A; = X' (k;) for
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eachi = 1,...,n and the collection {A,...,A,} forms a partition of Q. The unique
partition that X generates is therefore an experiment and shall be denoted by n(X).

The set of .«/-measurable extended indicator functions on £, denoted by ./, is
called the algebra of extended indicator functions generated by .o/. Observe that .o/*
is the smallest semigroup under functional pointwise addition that contains the
indicator functions for all events in .o/ (cf. Suppes and Zanotti 1976).

Random-Variable Axiomatization of Comparative Probability

In the random-variable axioms for comparative probability, the strict binary relation
> 18 defined from »= in the usual way as before. Here, however, > is a binary
relation over a given algebra of extended indicator functions .o/".

CPR1. If X>>Yand Y > Z, then X > Z.

CPR2. Either X >= Y orY > X.

CPR3. x o ¢

CPR4. (O - @

CPRS. X>=Yifandonlyif X+Z3>Y +Z

CPR6. (Archimedean Axiom) If X > Y, then there exist positive integers k and n
such that:

nX = kQ = nY.

Using axioms CPR1 to CPR6, the following representation theorem can be
proved (cf. Theorem 3, Suppes 2014)."

Theorem 1 A structure (Q, <", =) satisfies axioms CPR1 to CPR6 if and only if
there is real-valued function £ on /" such that for all X, Y € .o/ :

i) EX) = 0;
(i) E(Q) =0 and E(Q) > 0;
(i) EX+Y)=EX)+ E(Y);
(iv) X =Y ifand only if E(X) > E(Y).

Moreover, if E and E are real-valued functions on /" satisfying properties (i) to

(iv) , then there is a positive real number /. such that E = AE ; that is, any function E
satisfying properties (1) to (1v) is unique up to a positive similarity transformation.

While Suppes and Zanotti (1976) advance a similar axiomatization and theorem

for comparative probability, the axiomatization advanced here uses a simpler
Archimedean axiom (CPR6).

' APP’s Note: Theorem 3 of (Suppes 2014) does not hold without suitably modifying the axioms and
structural assumptions stated therein. In an effort to charitably reflect Suppes’ intentions, Theorem 3 of
(Suppes 2014) has been recast in the present paper with such modifications. The proof of the corrected
result proceeds very much in the spirit of the argumentation offered for Theorem 3 of (Suppes 2014).
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Random-Variable Axiomatization of Qualitative Independence

To obtain a system of axioms for qualitative independence, the random-variable
axioms for comparative probability (CPR1 to CPR6) are supplemented with the
following axioms:

QIR1. x Q.

QIR2. X 1Y implies X | nY for every positive integer n.
QIR3. V1W if and only if for all X, X" Y,Y' . Z,Z' € o/ and integers m, n:

(1) m<|n(X)| and n<|n(Y)|
(2) X1X' and Y1Y and Z1Z',
3) V"LYand W' LY and V"-W" L Y-Y', and
4 Z=V".Ye=XandZ =W".Y =X
imply
G) Z-Z = (V" Y)-(W-Y)=X-X.

The notation in which the axioms have been formulated is standard. For example,
|7(X)| denotes the cardinality of n(X), while the numerical superscripts adorning

the random variables refer to integer powers of the respective random variables.
Thus:

Vi= V.V-...-V

m—times

An alternative axiomatization underscores the reduction of independence from
random variables to events:

QIRL A10.
QIR2. XY if and only if ALB for every A € n(X) and B € n(Y).
QIR3. AB if and only if for all X,X'.Y,Y'.Z.Z' € o/

(1) X1X' and Y1lY and Z1Z/,

(2) AlYandBlY andA-BLY-Y', and

B) Z=A-Y=XandZ =B-Y =X
imply

4 z2.Z=A-Y)-B-Y)=X -X.

Building upon the insights of Suppes and Alechina (1994), the following
representation theorem can be proved.”

> APP’s Note: The axiomatization advanced in the present paper differs from the axiomatization
appearing in the submitted manuscript. The original axiomatization, based on that presented in §6.1 of
(Suppes 2014), is incomplete in formulation and execution. In an effort to capture Suppes’s original
intentions, an alternative axiomatization that draws upon Suppes’s earlier work (Suppes and Alechina
1994) has been formulated in the present paper. The remarks and technical discussion following
Theorem 2 and concluding §4.2 are my own.
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Theorem 2 A structure (Q,o/*, = , 1) satisfies axioms CPR1 to CPR6 and
QIR1 ro QIR3 if and only if there is a unique real-valued function [t on /" such
that for all XY € o/":

i EX) > 0;
(i) E(P) =0 and E(Q) > 0;
(i) E(X+Y) = E(X) + E(Y);
(iv) X =Y ifand only if E(X) > E(Y);
(v)  XLY if and only if E(A - B) = E(A) - E(B) for all A € n(X) and B € n(Y).

In particular, if & is a real-valued function satisfying properties (1) to (v), then
E(Q) = 1.

Of course, a real-valued function [ satisfying properties (1) to (v) of Theorem 2 is
an ordinary finitely additive expectation function on .o/* which, when restricted to
2/, 1s equivalent to a finitely additive probability function P. The proof of 2 is
omitted to due to space constraints. A key step in the proof invokes a result using
Vandermonde determinates that Renyi (1970a, p. 120; 1970b, pp. 170-171) credits
to L.V. Kantorvich.

Suppes and Alechina (1994) define pairwise independence for events within the
formal context of a random-variable axiomatization of comparative probability due
to Suppes and Zanotti (1976). Specifically, expressed in terms of the notation of the
present paper, Suppes and Alechina (1994) define an event A to be independent of
an event B just in case the following two conditions are satisfied:

(1) For all positive integers m,m’,n,n’:
nA = mQandn'B = m'Qimply nn' (A N B) = mm'Q.
(2) For all positive integers m,m’,n,n’:

nQ = mA andn'Q = m'Bimply nn'Q = mm'(ANB).

Suppes and Alechina (1994) show that if a structure (Q, .o/", =) satisfies Suppes and
Zanotti’s random-variable axioms for comparative probability, then there is a
unique real-valued function [ satisfying properties (i) to (iv) of Theorem 1 above as
well as the property that for all events A, B € .o, E(A - B) = E(A) E(B) just in case
A 1s independent of B in accordance with conditions (1) and (2).

The present account of qualitative independence, by contrast, rests upon axioms
formulated more generally for extended indicator functions. While axiom QIR2
expresses a familiar property of pairwise independence that applies to extended
indicator functions and not just to events, variants of this axiom appearing in well-known
axiomatic presentations of qualitative independence have been formulated only to apply
toevents (e.g., Krantz et al. 1971, §5.8; Fine 1973, IIF). Of course, the random-variable

axioms underlying the present account entail that properties (1) and (2) hold of A and B
just in case A_LB.
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The foregoing developments only treat the concept of pairwise independence.
The related concept of mutual independence can be explicated qualitatively in terms
of the notion of pairwise independence (cf. Domotor 1970, §3.1; Fine 1972, IIF). To
this end, define by recursion on positive integers n the n-ary relation 1., for each

family (X;:i € I) € (o/*)" of extended indicator functions whose index set has
cardinality |I| = n. For n = 1, a case included for the sake of convenience, define
1L, by stipulating that !|,,(X; : i € I) holds for every family (X; : i € I) of extended
indicator functions for which 7 is a singleton. For n = m + 1, assuming | ,,, has been
defined for every family whose index set has finite cardinality m, define I, by

setting for every family (X;:i € I) € (&*) with |I| = n:

1, (\, 1€ [ ) if and only if for every (4 1€l ) e X w(X;) and jel:

el

(1) iL,,,_(.»"l,; c1e I\{Jj }) and

An arbitrary family (X; : i € I) € (&/*) is thereby said to be mutually independent,
written L (X; : i e I), if 17, (X, : 7 € Iy) for each nonempty finite subset I C 1.
Observe that if [ is finite, then 1L (X; : i € I), if and only if 1L ;|(X;:i€ ). It is
readily verified that || agrees with the familiar numerical concept of mutual
independence. That is, if [ is a real-valued function satisfying properties (i) to (v) of
Theorem 2, then (X, : i € I), just in case for each nonempty finite subset Iy C I

and famlly (A, 1€ 1()) S x,-elon(X,-):

IE(HA,-) = J]E@).

i€l i€l

Of course, in anticipation of what’s next, the notation for pairwise independent
experiments may be extended to cover mutually independent experiments: A family
of experiments (m;:i € I) is said to be mutually independent, also written
AL (m; : i € I), if there is a family (X;:i € I) € (&/*)" such that m; = n(X;) for
every i € I.

Random-Variable Axioms of Comparative Uncertainty

To ensure that the axioms for comparative uncertainty admit a numerical
representation, axioms CUl to CUl must supplemented with additional axioms,
including an Archimedean axiom. To the axioms for qualitative independence (and
hence qualitative probability), we add the following axioms for comparative
uncertainty.

CURL. n>=,¢ and ¢ »=,9 imply =m >, 7.
CUR2. Either n>,¢ or ¢ >, m.
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CUR3. 7, 7(Q).
CURA4. If s J—éh Ty 7y T2, and él Fu 62) then:

(1) m L&, implies m © & =M © &
2) m O & Evm © & implies m L&,
CURS. n=,n® ¢ implies 1 ® & = .

CUR6. =n = ¢ implies n =, ¢.

The main problem we now face is to formulate a proper Archimedean axiom for
uncertainty using the product operation for experiments. The change required is not
drastic, but conceptually important. We use a concept familiar in the study of
quantitative probability and statistics, but not in the study of qualitative probability.
This is the concept of a sequence, finite or infinite, of mutually independent,
identically distributed (11p) random variables.

Like the notion of mutual independence, the concept of distributional equiva-
lence can be treated qualitatively within the present account. As before, we
introduce the notion of distributional equivalence for extended indicator functions
as well as experiments. Extended indicator functions X and Y from .&/* are said to be
identically distributed, written X = Y, if X~!(m) ~ Y~!(m) for each nonnegative
integer m. Similarly, experiments p and 0 are said to be identically distributed, also
written p = 0, if there are extended indicator functions X and Y for which p = n(X)
and 0 = n(Y) and X~'(m) ~ Y !(m) for each nonnegative integer m. More
generally, given an extended indicator function X € /" and a family of extended
indicator functions (X; :i € I) € («*)', if X = X; for every i € I, then the family
(X;:i€1) is said to be identically distributed in accordance with X, written
X = (X; :i €I). Likewise, if a given experiment © = 7; for every i € I of a given
family of experiments (m;:i€ ), then (m;:i€ ) is said to be identically
distributed in accordance with 7, written n = (7; : i € I).

In what follows, let ();_, m; denote the n-fold product of a given family of

experiments (7;);_, € (/)"
@ M = { CCQ: C#¢ and C= ﬂA,- for some (A,-):'=l S (n,-):'zl }
i=1

i=1

Of course, the case where n =2 agrees with the binary product - defined in
“Qualitative Axioms for Probability” section.
Using these ideas, we can now formulate an appropriate Archimedean axiom

(CUR7).

@ L(m),_, and I(&). , and LL(9),_;:
(i) =n=(m),and &= (&), and 9 = (Vi),_;;

i=1 J
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é) M > u @ Ui > @ Ck- (ii)
j=1 i=1 k=1

We next need to explain the quantitative measurement H of the entropy of an
experiment. An excellent, clear argument is given by Khinchin (1957, pp. 2-9). The
argument assumes elementary quantitative probability distributions (for finite
domains). The concept of uncertainty is used informally and intuitively. I take a
somewhat different path but reach the same result. I do so by initially restricting
cases just to the maximum entropy ¢ for n atomic events, i.e., the uniform distri-
bution for each n, the number of atomic events.
So by the basic principle already stated:

(1, 0,...,0)=0 (nouncertainty)

A
(p 2’2 (P 37313 ?

and so on. Simple additivity will not work, since the result would be ¢ (%,...,}) =1
for n—and so, for example, ¢(},3) =j+i=1and ¢(3,},3) =1+1+31=1.
Neither will simple multiplication, since the inequality is the opposite of what is

desired:
11y 11 1 (111)y 111 1
P\2'2) 72274 7 P°\3'3'3) T3'3'37 27
1 1

So we try the logarithm of the product as a simple function. To keep ‘P(i . 5) non-

negative, since ¢ negative would have a peculiar uncertainty value if ¢ were below
0 for certainty, we need to take the negative of the logs of proper fractions to obtain
positive uncertainty:

90(%,%) — —log(%.%) = _(log%+log%) = —210g%=2 ( for log base 2)

If we now weight each log by ,1-,, for each positive integer n, we have the following
simple result for uniform distributions:

Moreover, it is easy to show that using this for each positive integer n,
o(p1,-..,pn) <logn. So we baptize ¢ as the entropy function H, with the prop-
erties we considered important to match our intuitive idea of uncertainty:
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ﬂ-{](pl,...,p,,) = (p(pl, ...,p,,)

n (1)
= — ) pilogp;
i=1

Standard Representation Theorem for Uncertainty

Given the axioms presented in “Qualitative Random-Variable Axioms” section, the
following theorem can be proved.

Theorem 3 A structure (Q, /", =, 1, (<), =,) satisfies axioms CPR1 to CPR6,
QIR1 ro QIR3, and CURI1 to CURT7 if and only if there is a unique real-valued
function E on </ satisfying properties (i) to (v) of Theorem 2 as well as an entropy
function defined on the set of experiments over Q—that is, a real-valued function H

on (&) such that for all n,& € (A):

(1) H(x() =0

(2) =m= ¢ implies H(n) = H(E)

3) H(m)+H(E) > H(m © &), with equality if and only if m 1 &;

4) H(n) > H(n® &) impliesn = n ® &;

(5) 7= & if and only if H(x) > H(&);

(6) For each X € o/ and positive integer n, there exist n mutually independent
random variables X, ..., X, in o/, each with the same distribution as X.

Moreover, if H and H' are real-valued functions on () satisfying properties (1)

to (6) , then there is a positive real number A such that H = L H'; that is, any
function H satisfying properties (1) to (6) is unique up to a positive similarity
transformation.

The proof of Theorem 1 applies techniques similar to those in the theory of
measurement (see, e.g., Krantz et al. (1971)). The proof has been omitted to due to
space limitations.

Observe that the probability function P on .2 corresponding to the expectation
function guaranteed by Theorem 3 is strongly continuous in the sense that for every
real number ¢ > 0, there is a partition {E,...,E,} C o/ of Q (i.e., an experiment)
such that P(E;) <e for every i = 1,. .., n. It follows that if o7 is g-field, then P is in
fact strongly nonatomic in the sense that for every A € ./ and real number € > 0, if
e <[P(A), then there exists B € .o/ such that B C A and P(B) = ¢ (Rao and Rao
1983, p. 142); this would also follow if .o/ satisfied a slightly weaker condition
called the Seever property Rao and Rao 1983, p. 210). If P is strongly nonatomic, it
follows from a result due to (Aczél et al. 1974, p. 135) that the real-valued function
[H guaranteed by Theorem 1 is in fact a mixture of the Shannon entropy measure
and the so-called Hartley entropy measure. The Hartley measure s of an experiment

@ Springer



P. Suppes

n is log N(m), where N(7) is the number of elements of 7 with nonzero probability.
Thus, Theorem 1 implies the following corollary.

Corollary 1  If the field of events .o/ in Theorem 3 is a o -field (or satisfies the
Seever property), then the axioms of Theorem are necessary and sufficient for there
to exist a unique real-valued function £ on /" satisfying the stated conditions as
well as an entropy measure H that is a mixture of the Shannon entropy measure @

and the Hartley entropy measure \\—that is, there are nonnegative real numbers o
and P such that for every m € () :

H(z) = a@(r) + pY(n).

Bounded Uncertainty

I begin the analysis of bounded uncertainty by considering the classical definition of
bounded rationality given by Herbert Simon (1957, p. 198):

The capacity of the human mind for formulating and solving complex
problems is very small compared with the size of the problems whose solution
is required for objectively rational behavior in the real world — or even for a
reasonable approximation to such objective rationality.

Of course, Simon spends many pages expanding on this thesis and claiming that
it is a great mistake of the behavioral sciences not to recognize the limited capacities
humans have for solving the complicated problems they are presented with. He
especially objects to a simple classical notion of the “economic man.” It is not my
task here to criticize what he has to say, or even to state what I agree with.
Nonetheless, the general thesis about the capacities of humans, or even of
organizations of humans, to solve complex problems being clearly limited is a
truism that in today’s environment can hardly be rejected by any informed person.

My limited task is just to explain, and give at least an example or two, of the
importance of thinking about bounded uncertainty in the design of experiments, and
even, sometimes, in the design of the analysis of data. Fortunately the ideas of
independence and of probability distributions have already been introduced in
earlier sections of this article. These ideas can be used to state in an efficient and
clear way the problem of asking for too much in the design of experiments.

For the more detailed analysis, let us consider one of the simplest possible
experiments, which is that of tossing a coin of unknown bias repeatedly in a way
that produces independent trials, in order to estimate the bias, or to put it another
way, the probability of getting heads in such repeated trials. In formal statistical
terms, this is a problem of studying the behavior of independent random variables
that are identically distributed, and the problem I have selected is among the
simplest possible that can fit this description. So for this simplest of all problems,
how many tosses, or repeated trials, if you wish, should be planned for? (I leave out
the Bayesian aspects of this discussion just to simplify and emphasize the main
points I want to make.)
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Let A; be the indicator function representing the kth trial of tossing the coin. This
random variable can have only two values. Here let 1 be the value of A; for the
outcome of the toss resulting in “heads,” and let 0 be the value for the outcome of
the toss resulting in “tails.” We can easily compute the entropy of the k" trial as a
function of its unknown probability p;, which is in explicit terms the probability
p(Ax = 1). Using notation and ideas from the earlier sections, we can write down
the equation for the entropy H(Ay), which is expressed in the following familiar
equation:

H(Ak) = —( prlogpi + (1 — py)log(1l — py) )

Usually the entropy is computed in terms of log base 2. Given this equation and the
additivity of entropy for independent random variables, we can then easily compute
the total entropy of an experiment with n trials, which is the following expression:

H (iAk = iH(Ak) = n [H](Ak),
k=1 k=1

Since the entropy of a single trial is positive, the entropy of n up trials will be
positive and monotonically increasing in uncertainty.

If there were no constraints on cost or time, the ideal experimental investigation
of any sort would benefit from having unbounded uncertainty of outcomes in a
sequence of independent and identically distributed random variables. Put in purely
statistical terms, the more 1D trials the better the test of the null hypothesis, whatever
it may be. But the slogan of “the more the better” is naive if cost and time are not
considered. To put it simply, ideal investigations are idle to think about if no
concerns for cost and time are considered. Nonetheless, many aspects of mathematic
statistics reflect a concern for stopping rules in the design of experiments; the
relevant literature is now very large, and entropy measurements of various kinds are
considered.

The limited purposes of this article are, first, to show that at a qualitative
foundational level, uncertainty, as measured by entropy, can be introduced as a
fundamental concept on a par with comparative probability; and second, cannot be
optimized in any pure sense of considering only uncertainty, as well represented
statistically by large collections of independent identically distributed random
variables, but must be bounded by external constraints of cost and time in any real-
world regime of experimentation.

There 1s one important problem that might lead to confusion about the role of
uncertainty in determining the number of trials to run in a given investigation. This
is the very different role of the study of independent and identically distributed
random variables that have been studied so intensely from a mathematical
standpoint in the limit theorems that describe their asymptotic behavior. This is one
of the oldest serious mathematical topics in statistics, beginning as it does, with the
early work of Bernoulli, de Moivre and Laplace in the 18" century. But the
objective of those studies, important as they are, is quite different from the concrete
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design-of-experiment question of how many up trials should be run to provide a
practical test of significance of the given hypothesis.

This general topic goes under the title of “stopping rules” in modern statistics.
As the name suggests this is a study of how many replications are needed, but still
practical, to give confidence about the outcome. Such studies are of particular
importance when they involve, for example, the prescription of a new drug for a
disease or illness, but they are of importance in all kinds of other topics as well, such
as the design of airplane engines or agricultural regimes for rotating crops.

It is not possible here to go into the mathematical and technical statistical
literature on stopping rules, but it will be worthwhile trying to give some idea of
how stopping rules are in themselves related quite directly to the concept of
uncertainty as developed in this article.

In the extensive literature on stopping rules, computations of entropy are
uncommon. [ believe it would be desirable to carefully study additional
computations, or rather additional use of such computations, in the formulation of
stopping rules. I sketch a simple case.

The example I consider, is testing the simple theoretical hypothesis that a coin is
unbiased. I write this hypothesis as IH]T(%,%), where T stands for ‘theoretical’ and
(% , %) corresponds to the probability % of “heads” and % of “tails” on a single toss of
a given coin. So the entropy of this hypothesis on a single toss is

(4.1 = ~iog ]~ 1o

2°2 2 "2 2 72
1
——logi

= —logl + log2

= 1.

So, in theory, the entropy of n tosses is simply

11
nHT(E’E) = N.

Our experiment 7" of n trials to test this hypothesis is a sequence of n np random

variables as already described. Since the probability p; of “heads” in the k" trial of
the experiment is, in terms of entropy,

lle(pk,(l —Pk)) = —pilogpr — (1 — pi)log(1 — pi),

we must estimate p; from the n up experimental tosses of the coin from the actual
sequence of n outcomes of trials, the main empirical result of the experiment n". We
can do so by estimating p; from the empirical data, with some using the mean
number of “heads” in the empirical sequence of outcomes, and, no doubt, some also
using a Bayesian prior in estimating p;. Another possibility, which I will not explore
here, is to use the theory of Kolmogorov complexity (1965, 1968) to estimate more
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directly the entropy of the actual sequence of “heads” and “tails” in the experiment.
However the estimate is made, let Hz(7n") be the experimental entropy.

The proposal is then to replace the standard statistical computations for accepting
or rejecting the theoretical hypothesis lH]T(% , %) by analyzing the absolute difference

of uncertainty, as measured by entropy:

1 1
Hr(~,~) — He(x"

It is the quantity AH of entropy difference that should be an object of statistical
analysis. Moreover, in any real experiment Al is finite and non-negative. Indeed,
not just finite, but bounded before the actual outcome is realized by the design of the
experiment. This last point is the critical one in the present context. The necessarily
bounded uncertainty of the experimental design of any actual experiment implies
one important aspect of bounded rationality.

AH =
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