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Abstract
In ‘Computing Machinery and Intelligence’, Turing, sceptical of the question ‘Can 
machines think?’, quickly replaces it with an experimentally verifiable test: the 
imitation game. I suggest that for such a move to be successful the test needs to 
be relevant, expansive, solvable by exemplars, unpredictable, and lead to action-
able research. The Imitation Game is only partially successful in this regard and 
its reliance on language, whilst insightful for partially solving the problem, has put 
AI progress on the wrong foot, prescribing a top-down approach for building think-
ing machines. I argue that to fix shortcomings with modern AI systems a nonverbal 
operationalisation is required. This is provided by the recent Animal-AI Testbed, 
which translates animal cognition tests for AI and provides a bottom-up research 
pathway for building thinking machines that create predictive models of their envi-
ronment from sensory input.

Keywords  Turing test · AI · Comparative cognition · Deep reinforcement learning

1  Introduction

In his 1950 paper ‘Computing Machinery and Intelligence’, Turing posed the 
question ‘Can machines think?’, then promptly discarded it in favour of an experi-
mentally verifiable question: ‘Can machines perform well at the imitation game?’, 
an open-ended verbal test of conversational ability (Turing 1950). Turing’s move 
to replace the question with a verbal test provided a valuable empirical foothold 
for tackling the original ill-defined question. Unfortunately, the reliance on purely 
written questions and responses meant that physical components of intelligence 
were overlooked (Harnad 1991). Turing has had lasting impact on the field and 
this has led some research areas, such as purely symbolic AI, to attempt to build 
intelligence from the top-down. Here, higher cognitive functions are modelled in 
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isolation from the low-level sensory pathways, predictive models, and interactive 
abilities they are scaffolded upon, at least conditionally, in our only current exem-
plars of thinking machines: biological organisms. Frameworks such as active 
inference suggest that these systems are instead built up from a drive to build 
predictive models and act in such a way as to best explain their sensory inputs 
(Friston et al. 2011). If we want to learn from the existing exemplars of the qual-
ity then a bottom-up approach is warranted.

Following arguments given by Dennett (1984) I consider the move that Turing 
made to be one of weak operationalisation. In other words, Turing replaces the 
original property (thinking in machines) with an empirical measure that can be 
taken as a non-perfect marker for presence of that property. The success of such a 
move depends on a number of criteria that I introduce in this paper. Namely, the 
test must be relevant, expansive, solvable by exemplars, and, especially when the 
test will become a target and not just, say, a physical measure, must be unpredict-
able and lead to actionable research. Under these metrics I show that the Imi-
tation Game, whilst clever, is not a particularly good operationalisation of the 
original question. The actionable research metric is particularly important in this 
case because the starting point ‘can machines think’ is intended as a future hypo-
thetical. The main pragmatic benefit of a weak operationalisation is not to apply 
the measure on existing systems, but to be able to design systems that pass the 
measure.

In this paper I introduce a different way to operationalise ‘can machines think?’ 
which ignores the verbal components of thought and instead focuses on physical 
intelligence. This bottom-up operationalisation is currently implemented as the 
Animal-AI testbed (Crosby et al. 2020), in a way which, I will argue, provides our 
best research path towards building thinking machines. Further information about 
the testbed and links to the fully open source code can be found at http://anima​laiol​
ympic​s.com.

One reason that Turing focused only on the ‘higher types of thinking’ in his 1950 
paper is that, at the time, computer vision was expected to be an incredibly com-
plex problem that would require perhaps unforeseeable advances in the power of 
machines. As Turing himself stated when arguing for the feasibility of machines that 
pass the imitation game, “only a very small fraction [of the storage capacity of the 
brain] is used for the higher types of thinking. Most of it is probably used for the 
retention of visual impressions.” (Turing 1950). In the intervening 70 years there has 
been significant progress in building machines. With deep reinforcement learning it 
is now possible to use pixel inputs, albeit of much lesser dimensions than the num-
ber of photoreceptors in a human or animal eye, to train systems capable of playing 
Atari games at a human level (Mnih et  al. 2015). This means that the bottom-up 
approach is finally at least conceivable, even if only just beginning to show prom-
ise in more sophisticated 3D environments, whether simulated (Crosby et al. 2020; 
Juliani et al. 2019; Guss et al. 2019), or as constrained problems in the real world 
(Akkaya et  al. 2019). Given that seventy years later the top-down approach has 
failed to produce thinking machines, and that now the technology is finally in place 
to begin, it is now time to give the bottom-up approach a try (Lake et al. 2017).

http://animalaiolympics.com
http://animalaiolympics.com
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Simultaneous to the advancements in AI, the non-AI world has also seen the 
development of sophisticated experiments to understand how animals interpret 
the physical world they inhabit, and how far they are able to react appropriately 
in novel environments (Shettleworth 2009). These experiments are far from per-
fect (Farrar and Ostojić 2019), but the translation to AI can solve most of the 
problems that are particular to working with animals such as small sample sizes 
both in terms of number of experiments and number of participants, and trophy 
hunting for outlier displays of cognitive ability (Allen 2014). By putting together 
an evolving testbed of experiments, each designed to test for a particular aspect 
of physical intelligence, it is possible to build up an expansive testbed, which is 
relevant under frameworks that believe thought is built up from low-level cogni-
tive abilities. As the tests are solvable by most animals and certainly by humans, 
they are solvable by exemplars, indeed more so than the imitation game which is 
restricted to language-using entities. The Animal-AI Testbed was first presented 
as a competition with hidden tests which have now been released publicly. The 
addition of further hidden tests based on the same original ideas ensures that they 
remain unpredictable, whilst the release of the original tests, and its breakdown 
into categories, provides an actionable research path.

The tests involved in Animal-AI’s relevance for ‘thinking’ depend in part in 
on the separation between low-level abilities of embedded systems and high-level 
cognitive concepts. A more continuous outlook such as that suggested by rep-
resentation-friendly versions of embodied cognition or dynamical systems the-
ory (Shapiro 2019) will naturally find the presented tests relevant. A framework 
that separates high-level cognitive tasks as the pure realm of thought will have 
to be satisfied that the testbed contains many tasks from the more exceptional 
purported abilities of animals. These include delayed gratification, which tests for 
the refusal of an immediate smaller reward in return for a greater future reward, 
numerosity, which tests the ability to choose a larger number of rewards even in 
cases that require addition of unseen rewards, and tool use, which requires manip-
ulating environment objects to make accessible new areas of the environment.

The first goal of this paper is to set out the qualities a weak operationalisa-
tion must have in order to be successful. I then survey the current state of test-
ing in comparative cognition (Sect. 3) and show how an AI environment can be 
set up to translate many key tests (Sect. 4). In the final part of the paper I pre-
sent the Animal-AI testbed (Sect. 5) and show how it better fits our requirements 
than the imitation game. The testbed is designed to have the equivalent proper-
ties of a Turing Test for nonverbal thought, and contains many different types of 
experiment to cover different aspects of physical intelligence and common sense 
reasoning. The testbed was recently used as part of a competition (Crosby et al. 
2020), which showed that both that we are a long way from solving all of the tests 
and that the testbed is robust to simple solutions and ready to be tackled in long-
term research. I finish the paper (Sect. 7) by discussing some possible objections 
to the testbed as a route to thinking machines and consider ways in which it can 
be improved. I ultimately conclude that solving Animal-AI should be the next 
step towards building machines that think.
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2 � Operationalising ‘Can Machines Think?’

In the 70 years since Turing discarded the question ‘Can Machines Think?’ as 
“too meaningless to deserve discussion” the term ‘machine’ has become ubiqui-
tous in AI, with one of the major current research strands, ‘Machine Learning’, 
using the term liberally to apply to all kinds of AI algorithms or agents. Even 
attributing thinking and related psychological properties to machines, and poten-
tial future machines, has become more common. Prominent examples include 
Lake et  al. (2017) who set forth a research agenda for building machines that 
think like people, Racanière et al. (2017) who present a deep reinforcement learn-
ing architecture where agents ‘imagine’ future states based on rollouts of their 
policy in order to find the best course of action, and Rabinowitz et al. (2018) who 
present a method for ‘Machine Theory of Mind’, ToMNet, by which agents can 
learn to make predictions about other agents’ mental states (to use terminology 
from the paper).

However, there are dangers to using such psychologically loaded terms to 
apply to Machine Learning agents. Shevlin and Halina caution against the use 
of ‘rich psychological concepts’ (those that have complex histories in cognitive 
science), and in particular suggest that ToMNet would be better presented as per-
forming behaviour reading and not as inferring mental states (Shevlin and Halina 
2019). They argue that artificial behaviour reading is still impressive and use-
ful research, and this characterisation would avoid unnecessarily posing questions 
about machine mental states. Turing also avoids explicitly evaluating machine 
‘thinking’, instead positing what he claims is a closely-related empirical question: 
can machines defeat humans in the imitation game? I follow in these footsteps. 
The goal is not to provide a rigorous marker of thought, like with the related 
concept of cognition this may not be possible (Akagi 2018; Buckner 2015), but a 
pragmatic marker that can guide research.

In the imitation game, a human judge must determine which of two players 
(one male, one female) is male, solely by asking questions and analysing their 
answers. In the machine version, the male player is replaced by a machine. To 
avoid confounding factors such as appearance being taken into account, the ques-
tions are asked and answered via typed text only. There has been much discussion 
about the particular version of the test proposed by Turing, how it has evolved 
and been reinterpreted over the years, and what exactly it, and related tests, meas-
ure (Epstein et al. 2009; Proudfoot 2011; Block 1981; Hernández-Orallo 2000).

My reading of the original test is similar to that given by Dennett (1984), that 
it is intended as a weak operationalisation of the original question (Can machines 
think?). To operationalise a property (e.g. thinking in machines) is to give it an 
empirical measure (e.g. performance in the imitation game) that can be taken 
as a marker for attribution of this property. A weak operationalisation provides 
an empirical measure that is not intended as a foolproof identifier immune from 
false positives (or even false negatives). Even a weak operationalisation can have 
many benefits, especially in an engineering discipline such as computer science. 
In this case it lays out a research path: how do you build a machine that passes the 



593

1 3

Building Thinking Machines by Solving Animal Cognition Tasks﻿	

test? The successful conclusion of this research will either be a machine that has 
the property in question, or, at the very least, will provide a much better vantage 
point from which to (re)tackle the original question.

Unfortunately, what has now become known as the Turing Test no longer oper-
ates under normal testing parameters. For one thing, it has become a target, with 
researchers aiming to pass by any means necessary. Goodhart’s law (Goodhart 
1984), often restated as

When a measure becomes a target, it ceases to be a good measure.

applies especially in cases of weak operationalism. Consider the weak operation-
alisation of the question ‘is a painting important?’ to ‘has it appeared on the wall of 
an art gallery that attracts at least n visitors a year?’. This is not a great definition, it 
is purposefully weak. Nevertheless, it is not hard to imagine it serving some infor-
mal purpose. However, if this test were considered the de facto measure, anyone 
could become the artist of an important painting with the right connections, or per-
haps some blu-tac and a little mischief. The process of creating important art would 
become removed from the qualities of the piece itself. In a similar way, trying to win 
the Loebner prize (a long-running Turing Test inspired competition) is a very differ-
ent goal from trying to build a thinking machine (Hernández-Orallo 2000).

I have suggested that Turing’s operationalisation must, due to the nature of the 
question, be weak. This is not meant in a purely negative sense; a weak operation-
alisation may be the only sensible option when dealing with ill-defined terms like 
‘thinking’ and can have many benefits. The Turing Test can be empirically analysed; 
it opens up a concrete research path; and it sidesteps ambiguous questions about the 
nature of thought to which there may be no definitive answer. The imitation game is 
not unique as a possible measure and there are many possible candidate measures 
that could perform a similar function. In the rest of this section I will analyse the 
qualities of that a good weak operationalisation should have and also how well the 
imitation game itself fares. As the term Turing Test has become so ubiquitous, and 
because I will later introduce a new Testbed, from now I will use the term ‘test’ as a 
stand-in for a measure or set of measures.

The first quality, which I will call relevance, and which must hold for any type 
of operationalisation, is that the introduced test must be solvable only by utilising 
or referencing abilities relevant to the original property in question. If it can be 
solved without such relevant abilities, then the test does not identify the correct 
attributes. If it requires too many irrelevant abilities, then these become uncon-
trolled confounds. Using text as a mediator in the imitation game and allowing 
any type of question is a way to ensure some relevance. Answering (the right kind 
of) questions involves something akin to thinking, and restricting the test to writ-
ten words removes any concerns that the machine needs to look human, or even to 
look like it is thinking. Looking like you are thinking is a bad operationalisation 
of thinking because it fails on relevance. With the Turing Test relevance is in the 
hands of the judge. If the judge does not ask questions that require any thought 
to answer and merely exchanges pleasantries, then the test is no longer any good, 
and it is also fairly easy to build a machine that would pass. By limiting to textual 
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answers, aspects of physical intelligence that might be relevant for thought are 
discounted, though some could be assessed with clever hypothetical questions.

The second quality is that the test must be expansive. By this I mean that it 
should test for as many aspects of the original, ambiguous property as possible. 
This helps to ensure that the property is captured to its fullest extent. A common 
tactic in analysing ill-defined terms is to break them down into more manageable 
components. If only a single component is used as part of a test, then this can tell 
only a partial story. For example, a bad operationalisation of prime-ness in very 
large integers would be that they are odd. While this is a relevant property, the 
test is not expansive enough and returns too many false positives. The imitation 
game is potentially expansive, including the whole set of writable questions, but 
in reality modern versions of the Turing Test are only as expansive as the judges’ 
questions. If the judges do not cover a broad range of topics and employ different 
questioning styles then this property is not met and the test cannot be considered 
to be a good indicator of thinking.

The third quality, which I will call the exemplar quality, is that the test should 
be passed by as many known exemplars of the original property in question as 
possible, and as few from outside that set as possible. This increases the likeli-
hood that solving it requires only relevant abilities. The imitation game is defined 
in terms of average human performance, which is aiming too high as it cuts out 
roughly half of the population of human exemplars. It might have been tempting 
to set the bar of a test as high as possible to reduce false positives, but this makes 
it too exclusive. In the case of ‘thinking’, this could correspond to setting the 
test to beat the strongest human players at the ancient strategy board game Go. 
These humans are clearly prime exemplars of the ability to think. However, we 
now have AI systems that can outperform all humans at Go (Silver et al. 2017), 
and they are not generally considered to be good examples of thinking machines. 
Defeating humans at Go was a milestone in AI progress, but the problem was 
too specialised to relate directly back to the property of thinking. The exemplar 
quality instead suggests that the bar should be set low, another reason to consider 
animal tasks as the starting point.

The first three qualities are all ways to ensure that the operationalisation does not 
stray too far from the original question it was trying to answer and apply equally to 
strong and weak operationalisations. For weak operationalisations, especially those 
providing markers for future hypothetical systems, There are two further properties 
that are required to ensure that the test, when used in practice, is a pragmatic marker 
for the initial property.

The first practical constraint for engineering tests is that the test must contain 
unpredictable elements. If the test is too predictable, then it will be subject to Good-
hart’s law, and will also be solvable by ‘shortcut’ methods that do not engage with 
the original property. This is especially true for tests of AI systems, where determin-
istic problems can be solved by a database of answers or action sequences (Searle 
1980). The imitation game neatly adds unpredictability by allowing the judges to 
ask any questions they deem fit. The questions are not known before the test begins. 
Participants could be asked to interpret recent political events, to speculate about the 
future, or to write poetry. However, again, the quality of the test is determined by the 
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predictability of the judges. If the questions can be predicted easily, then answers to 
them can be hardcoded.

In our case, the question ‘can machines think?’ is, still seventy years later, a ques-
tion about possible future machines. The operationalisation of this question is not 
intended as a definition, and would be useless if it could never be met. As there 
are currently no thinking machines, the only way to potentially meet it is to make 
progress on the measure that it sets out. This means that an important final qual-
ity of an operationalisation of this type of question is that it leads to an actionable 
research plan. We do not want to ask if machines can think just to find out a theoreti-
cal answer, but to help us work out how to build them should that answer be ‘yes’. 
Even if we are only interested in the former, then progress towards the latter will 
still be helpful in this regard as new insights will certainly come through the process 
of trying to solve the test. This final quality does not apply to operationalisations 
in non-engineering contexts or for non-hypothetical questions, but in this context it 
might be the most important. Again the Turing Test has mixed results here. The last 
seventy years have shown the Turing Test to be unsuccessful for leading to creating 
thinking machines, but successful at inspiring progress in AI.

I have argued that the imitation game is just one possible weak operationalisa-
tion of the question ‘can machines think?’. It partially succeeds on most accounts, 
depending on the quality of the judges, but sets the bar too high to be solvable 
by most exemplars. Its relevance depends on whether it is possible for thinking 
machines to be disembodied and working in discrete action spaces, a discussion that 
I do not have space to elaborate fully here. For this paper I will assume that modern 
representation-friendly views in the tradition of embodied cognition, such as active 
inference (Williams 2018; Clark 2015), are correct in giving a strong emphasis to 
the roles of action and interaction and predictive models, in all known thinking 
machines. Under these views, a verbal-only test misses a necessary component of all 
known exemplars.

I will now turn to main goal of this paper, introducing a new nonverbal opera-
tionalisation that scores well across all five qualities introduced in this section. 
This nonverbal test assumes that thinking machines can be built through increas-
ingly sophisticated abilities to interact with and model properties of their environ-
ment. To be expansive, a wide range of tests will be needed. For this, we can draw 
from numerous comparative cognition studies of aspects of ‘thinking’ in nonverbal 
biological entities, including tests performed on non-human animals and studies in 
child development.

3 � Comparative Cognition

One method for creating a non-language based operationalisation could be to 
attempt to define a testing environment that is as open-ended as the imitation game 
in terms of the type of questions that can be posed inside of it. A way to do this that 
does not move to far from Turing would be to use open-ended formal languages 
in place of natural language. This has be suggested in terms of the ability to write 
efficient sequence descriptions in the C-Test described in Hernández-Orallo (2000). 
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A more general version would be problem classes contained by the AIXI model 
described in Hutter (2000). These sets of tasks are still language-based, just using 
formal languages instead of human language, but most problematically under our 
framework, they contain many tasks not solvable by exemplars of thought. These 
tests are much better suited to measuring abstract non-anthropomorphic notions of 
intelligence, which is not our goal here. The non-language based abilities we are 
interested in are those involving continuous interaction with an environment.

Another attempt would be to collect together as many non-language based tasks 
that we expect our exemplar thinking machines to be able to solve. Instead of cre-
ating this non-language based operationalisation from scratch, we can draw on the 
wealth of behavioural tests and ideas from research in comparative cognition in non-
language or pre-language entities, such as non-human animals and children. The 
overall goal of this research is not explicitly to answer the question ‘can animals/
children think?’, but to explore some of their capabilities through experiment. Simi-
larly, our overall goal is not explicitly to answer the question, ‘can machines think?’, 
but to create a test that is as relevant, expansive, unpredictable, solvable by as many 
exemplars as possible, and that provides an actionable research tool.

Capabilities investigated in comparative cognition include understanding the hid-
den causal relations required for effective tool use (Bluff et al. 2010), the ability to 
forgo an immediate reward for a later, larger, reward (also known as delayed grati-
fication) (Beran 2002), and possessing theory of mind (Penn and Povinelli 2007). 
With in each case disputes as to animals even do possess the relevant abilities. 
These are all areas that have also been studied in AI in recent years. Tool use was 
found to be an emergent property in Open-AI’s hide and seek experiments using 
large scale standard reinforcement learning algorithms (Baker et al. 2019), a varia-
tion of delayed gratification, accepting a small negative reward for a large later posi-
tive reward, is included in DeepMind Lab in the ‘Stairway to Melon’ level (Beattie 
et al. 2016), and I have already briefly introduced the Machine Theory of Mind work 
(Rabinowit et al. 2018).

A particular task that involves tool use and causal reasoning is the Aesop’s 
Fable task. In the basic version of this task, an animal must retrieve food from 
a container of water that has been fixed in place. The food floats on top of the 
water just out of reach of the animal, but with some conveniently placed rocks 
(or other sinking objects) in the vicinity. The solution is to drop the rocks into 
the container to raise the water level high enough to retrieve the food floating 
on top. Behaviour that can solve this task has been observed in corvids (Jelbert 
et al. 2014). However, it is unclear just what kind of reasoning, if any, is involved 
in solving the task (Hennefield et al. 2018). Consider a single happy accident in 
which the frustrated animal accidentally drops a heavy object in the container 
while annoyed it cannot retrieve the food. This has the effect of raising the water 
level and bringing the food closer, and the animal may associate the sequence 
of actions with the positive reward of more obtainable food without the proper-
ties of water and objects ever mattering to the solution. In the ideal case though, 
an entity presented for the first time with a situation containing some rocks, a 
beaker full of sand with inaccessible food on top, and a beaker full of water with 
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inaccessible food on top would be displaying the ability to think if it, perhaps 
after a pause to take in the scene, picked up a rock and dropped it in the beaker of 
water.

Taken individually, comparative cognition tests do not have the expansiveness 
quality, and unfortunately they are often performed in isolation due to the large 
costs in time and effort of working with animals and children. This has been rec-
tified somewhat recently, with the introduction of test batteries (Herrmann et  al. 
2007; Shaw and Schmelz 2017), but the problems of cost still remain. We should be 
wary of any individual behavioural test results that supposedly confirm some higher 
thought process or capability. This was recognised when as comparative cognition 
was first founded as a field, with Morgan arguing that many apparent demonstra-
tions of ‘thinking’ can be explained by intelligent adaptation (Lloyd Morgan 1894). 
More recently, many have argued that many high-level capabilities such as planning 
and tool use can be explained by associative learning (similar to the reinforcement 
learning employed in many of the AI examples given so far) (Lind 2018). Farrar 
and Ostojić (2019) give several reasons why standard claims of cognitive abilities in 
comparative cognition fail. These include the publishing bias towards finding excep-
tional cognitive abilities, or trophy hunting (Allen 2014), which leads to confirma-
tory research methods, and lack of high enough sample sizes or rigorous statistical 
analysis.

Fortunately, we can mitigate these problems when porting tests to AI. AI sys-
tems are considerably easier to work with; they can be tested unsupervised without 
breaks, and at very little cost and can be restarted to experience environments afresh 
when required. This means that not only can a single system be tested on all tests 
that have been ported over, but can also be retested on many variations to build up 
statistically significant sample sizes. The quality of expansiveness, arguably missing 
in comparative cognition, can be met when performing similar tests on AI systems. 
The bias towards reporting, and therefore even finding (perhaps erroneously) also 
becomes a non-issue when individual tests are placed in the context of a large test 
battery and positive results are seen purely as reason for further study.

Most studies on animals and children automatically pass the unpredictability con-
straint. In most cases, the animal or child could not have expected the test, and prob-
ably does not even conceptualise it as a test. As long as good practice is maintained 
by the experimenters, there is no reason that the animal or child should be over-pre-
pared. This is a much more significant problem in AI. Once a test has been revealed, 
a team of engineers can work to create a system with the sole goal of passing the 
test. One way to combat this is to use hidden test problems which are fair, but could 
not be predicted by the engineers. This will be the main topic of the next section.

The only remaining quality is that the tests must lead to an actionable research 
plan. Opening up research paths is less relevant as a concern in comparative cogni-
tion, which does not aim to genetically engineer or build biological creatures to pass 
the tests, but only to determine the capabilities of existing creatures. However, when 
adapting tests for AI systems it is useful to provide a wide range of tests of different 
difficulties, and to cohere with existing AI research paradigms. This way, there will 
always be a next problem to solve (a subset of the currently unsolved tasks) that can 
be isolated for research.
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In summary, experiments in comparative cognition form a good basis for opera-
tionalising nonverbal components of thinking. They are naturally relevant (assum-
ing a representationalist version of embodied cognition such as active inference) and 
solvable by exemplars. The issues with expansiveness in comparative cognition can 
be solved with the move to AI by including a wide variety of tests and perform-
ing extensive testing that is not practical with animals or children. The remaining 
challenge is maintaining unpredictability, which comes automatically when working 
with animals, but is lost when teams of engineers deliberately set out to solve tests. I 
will discuss strategies for this in the next section.

4 � From Comparative Cognition to AI

When translating tests designed for animals to AI they must take into account cur-
rent AI capabilities and practices. In 1950, it was impossible to predict precisely 
how AI would progress. The field has been heavily influenced by the hardware that 
has been developed. For example, much of machine learning has been shaped by 
the utilisation of parallel processing from GPUs, primarily developed as graphics 
engines. Nevertheless, there are some surprisingly accurate predictions from the era, 
including Turing’s own suggestion for creating learning machines built on reinforce-
ment signals of reward and punishment.

One statement that has continued to hold is Moravec’s paradox, formulated in the 
1980s:

It is comparatively easy to make computers exhibit adult level performance on 
intelligence tests or playing checkers, and difficult or impossible to give them 
the skills of a one-year-old when it comes to perception and mobility (Moravec 
1988).

This makes sense in the context of evolutionary history; there is a much longer 
period of developing sensorimotor skills than the relatively recent higher-level 
thinking. We have also seen this play out in AI (in reverse temporal order), where 
we now have superhuman Go and chess players, but are still a long way from a robot 
that can solve the Aesop’s Fable task.

One problem that modern machine learning excels at is i.i.d. testing of labelled 
data. In machine learning, the i.i.d. assumption (that the datapoints are independent 
and identically distributed), is used when the data (both for training and testing) has 
been generated in the same way. A classic example where i.i.d. testing is common 
is with ImageNet (Deng et al. 2009), which contains hierarchically labelled images 
with over 20,000 classes, though subsets of the full database are more commonly 
used. AI now outperforms humans at image classification on this dataset (He et al. 
2015) and in general does well at i.i.d. tasks.

The application of the i.i.d. label to ImageNet is fairly loose, relying on an 
assumption that the data collection method used for the images is principled enough 
to be determined constant and that the images contained represent an unbiased sam-
ple of that method. Recht et al. (2019) show that classifiers with high accuracy on 
ImageNet show a significant drop in accuracy when tested on new images generated 
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in a way that attempts to match the generation process of ImageNet. This suggests 
that there is overfitting, even in this large dataset. Such overfitting is the exact reason 
to include the unpredictability constraint and shows the tendency for systems to be 
built purely to pass a test and not to have the generalisable properties that the test 
was designed for. One solution to this problem proposed by Recht et al. is to have a 
‘super hold-out’ set of data that is kept apart from the released dataset for multiple 
years and used only to test for overfitting to the released part of the dataset.

In contrast to i.i.d., out-of-distribution (o.o.d.) testing is much less common. 
Though it is starting to become more popular. One technique for o.o.d. testing in 
datasets like ImageNet is to separate out different contexts in which a labelled object 
can appear (Arjovsky et al. 2019; Geirhos et al. 2020). For example, if a dataset only 
contained cows that appear on grass and camels that appear on sand, then a classifier 
will likely find that the easiest method to accurately classify the images is to check 
for the presence of green or yellow pixels respectively. If green is in the background 
it is a cow, if yellow, a camel. An o.o.d. test of a camel on grass would be incorrectly 
labelled as being a cow. Of course, not all o.o.d. testing is good, and there is no point 
in taking just anything from outside the expected i.i.d. data. We can use a camel on 
grass because this is something that could naturally occur in a dataset of images, 
but it would not be fair to expect an ImageNet classifier to be able to read the word 
camel for example. Ideally, we want o.o.d. tests that illuminate relevant underlying 
properties of the intended solution, but this can often be hard to define.

The use of o.o.d. data will always be hard to define precisely, as what is fair, 
and what were the underlying generative processes of the original dataset is con-
text dependent and in many cases somewhat subjective. Furthermore, the distinction 
already rests on unstable foundations with the way the i.i.d. assumption is applied 
quite loosely in machine learning. Nevertheless, o.o.d. tests have the benefit of being 
automatically unpredictable, and, when implemented fairly, are a good way of guar-
anteeing that solutions actually implement the underyling properties intended to be 
tested for. One way to achieve this is to define an environment within which the tests 
will take place along with a language within which the tests will be written, but 
not their exact content. This is similar to the process of setting out a syllabus and 
providing past papers for an exam. This constrains the subject matter (analagous to 
the environment for physical tests), and also sets out some conventions which the 
unseen test will follow.

As well as using unseen o.o.d. tests, we also need the test to lead to a practical 
research plan. This means that it needs to conform to many of the standard prac-
tices in AI. The environment within which we will perform the tests must be well-
defined and available for open-ended training. It also must be sufficiently simplified 
enough that some progress can be made. It is not yet possible to solve animal cogni-
tion tasks in the real world, so a simplified simulated environment must be used with 
reduced observation size, simpler physics, and less noise. However, it must still be 
rich enough to incorporate a wide range of types of test in order to be expansive.

To summarise the last two sections, animal cognition tasks provide a good start-
ing point for designing a testbed for AI systems, but some care must be made when 
translating them for use. It should be possible to translate as many different types of 
test as possible into a single well-defined environment that is suitable for research. 
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The environment should be simplified to the point that it is usable by current and 
near-future AI systems. The tests should be kept secret, but a syllabus should be 
given. Finally, to facilitate research, it should be easy to generate and work with test-
like configurations within the environment. The next section presents the Animal-AI 
testbed, which was designed with these principles in mind.

5 � The Animal‑AI testbed

In this section I discuss the Animal-AI testbed as a weak operationalisation of the 
question ‘can machines think?’ for nonverbal intelligence. A presentation of the test-
bed from an AI perspective can be found in Crosby et al. (2020). All tests mentioned 
here can be played online at http://anima​laiol​ympic​s.com, which also includes fur-
ther details and links to all code needed to run the environment. An overview of 
the environment is shown in Fig. 1. The environment is a 3D simulated arena with 
simple physics in which an agent must navigate to retrieve rewards, similar to the 
food rewards commonly used in animal experiments. The agent receives pixel-based 
inputs each frame representing its visual point of view, along with some information 
about its current velocity. The agent then returns an action: move forwards/back-
wards and/or rotate left/right. To succeed in a task, the agent has to retrieve as much 
food as possible in the environment within the time limit (a given number of percep-
tion/action loops) by translating the visual inputs into successful action sequences. 
In many of the tests, this requires an intermediary step of interpreting the scene and 
predicting future states or reasoning based on the known properties of the objects 
and environment.

Fig. 1   The Animal-AI environment. The objects shown are the building blocks used to create levels. 
They can be combined to make complex scenarios for the agent to solve

http://animalaiolympics.com
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The objects in the environment can be used as building blocks to create many 
kinds of possible experiment. They can all be resized and rotated and the environ-
ment can hold any number of objects. This allows the associated testbed to be 
both expansive and unpredictable. To maintain its unpredictability, when used to 
measure intelligence, the exact configurations used for testing are kept secret. To 
keep them fair, all tests are built using a single configuration file that places all 
the objects at the start of the test. There are no interventions except for the agent’s 
actions and the results of the physics engine. Relevance and exemplar plausibil-
ity are ensured by using tests that are solvable by animals and/or humans. Finally, 
the tests are designed to lead to an actionable research plan. The environment 
has been created to be compatible with standard machine learning frameworks 
(Beyret et al. 2019; Bellemare et al. 2012; Julian et al. 2018), and the test difficul-
ties range from currently solvable, to requiring multiple new breakthroughs in 
research. The tests are arranged such that subsets can be tackled independently so 
that different research goals can separate out a new skill to tackle.

(a) Introductory (b) Y-Mazes (c) Detour Tasks

(d) Radial Mazes (e) Spatial Elimination (f) Delayed Gratification

(g) Support Tasks (h) Object Permanence (i) Numerosity

(j) Tool Use (k) Generalisation (l) Internal Models

Fig. 2   Example problems from each of the 12 task types. a contains familiarisation tasks. b–j have direct 
links to animal tests. k, l Are AI-specific. There are 900 total problems
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Figure 2 shows a breakdown by type of the experiments included in the testbed. 
There are 900 variations in all, representing a wide range of different testing types. 
To maintain unpredictability, all the tests were originally kept secret and used as 
part of the Animal-AI Olympics competition. They have all be made publicly avail-
able to make research on them easier with a new set of hidden tasks made available 
in 2021. A large part of the testbed is comprised of introductory tests. These include 
tasks with single food items placed in front of the agent and tasks with a single ramp 
that the agent needs to navigate up to reach the food. This category can be broken 
down into many subcategories based on the type of object introduced, but for brev-
ity we collect them all here. These are important to provide an actionable research 
goal, and provide some easier starting points to build research ideas from. If none of 
the tests were solvable then it would be hard to get started. They are also important 
to help analyse the capabilities of agents on more complex tasks. For example, con-
sider an agent that manages to climb multiple ramps in a row to retrieve the food. If 
this agent cannot also solve the simpler task of climbing one ramp, then it probably 
just got lucky in the more complex case.

I am not claiming this to be anywhere close to a complete breakdown of all the 
elements required to build a thinking machine. I do not believe this to be even pos-
sible. If it was then there would have been much more progress in the last 70 years. 
I am instead claiming that this is an extensive set of tests that captures enough rel-
evant abilities that solving them all would necessitate the conclusion that the agent 
is a thinking machine. The later tests have been specifically chosen to require main-
taining temporally extended internal models of the environment that can be used 
for reasoning and prediction. These kind of abilities are similar to those given by 
Adam’s mark of the cognitive in that the features of the models must have non-
derived content suitable for causal reasoning over multiple possible futures (Adams 
2010).

Y-Mazes are simple mazes where there are two concurrently visible choices 
available to the agent. These measure the preferences of the agent. Usually, one 
arm of the maze contains a positive reward, and the other is empty or contains a 
negative reward, but they can also be used to determine preferences between more 
subtle choices. The testbed includes three different types of Y-Maze (built in dif-
ferent ways), and both left- and right-reward conditions for a series of comparisons 
between positive and negative and different sized foods (larger food gives more 
reward) of increasing difficulty. These are a simplified setting for determining an 
agent’s ability to choose between different possible outcomes, arguably a fundamen-
tal component of thought.

Detour tasks, radial mazes, and spatial elimination tasks are types of navigation 
tasks that require either path planning or spatial memory. They can all easily be var-
ied in dimensions such as occluding wall size, number of arms and by the addition 
of landmarks that guide navigation. In radial mazes it is standard to hide food at the 
end of each arm so that the agent cannot use sight or smell to determine which arms 
it has already visited, and needs to form memories to ensure efficient navigation. In 
the testbed, food is hidden behind two small back-to-back ramps which allow pas-
sage, but block vision, in both directions. In these tasks, the time limit is often use to 
ensure somewhat efficient navigation.
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An interesting variation is described in Hughes and Blight (1999), where fish 
are trained to retrieve food from an 8-arm radial maze. Interestingly, with spatial 
cues available the fish appear to rely on spatial memory, while in the absence of 
cues they adopt algorithmic behaviour such as visiting every third arm, which ulti-
mately solves the maze without revisiting any arms. In one experiment of note, a 
delay is introduced mid-trial (by closing off the arms of the maze), which impairs 
performance only in the non-cue case. As we do not use any mid-test interventions 
in the testbed, this is achieved by setting a box to start ‘falling’ from high above the 
arena in the initial configuration. The box lands in the centre of the maze midway 
through the time-limit, creating a barrier and changing the structure of the centre of 
the maze.

Delayed gratification is the ability to forgo an immediate small reward to obtain a 
larger future reward. In the example shown in Fig. 2f a green food is placed under a 
set of rails that are slowly dispensing yellow food. An impatient agent, or one simply 
trained to retrieve any food available to it, will head to the green food, thus ending 
the level without the maximum possible score and failing. A successful agent will 
wait for the yellow food to drop and then collect this before finally also getting the 
green food. This requires the ability to predict future states and act on preferences 
over those states to maximise reward. It is certainly possible to come up with strate-
gies for passing that would pass this task without requiring any of the above abilities 
now that it has been revealed. However, in the context of a secret task this would be 
next to impossible.

Object permanence tests the understanding that objects still persist when they go 
out of sight. This requires a model of the world that is not just purely reactive to 
current inputs, but also takes into account properties that can be inferred, such as 
the location of an object that has just moved behind a wall. One set of tasks is based 
on the work of Chiandetti and Vallortigara (2011), which briefly occludes days old 
chicks from an object they have been imprinted on and hides it in an environment. 
Figure 2h shows a setup where there is only one place the object could have gone 
and, in this condition, a statistically significant proportion of chicks correctly infer 
the correct location.

The internal models category also contains tests that can only be solved robustly 
with a model of the environment that is maintained in the absence of current sen-
sory information. In these, the lights in the environment are turned off (replacing the 
inputs with darkness). Tasks include navigating a previously seen path and predict-
ing the final location of food rolling down a ramp.

Numerosity tasks involve counting to choose an option with more rewards. Fig-
ure 2i shows a setup where the left side has more rewards than the right side, which 
can be solved with the ability to compare relative density of food. Other tasks in 
this category (which comes after the object permanence category) emulate addition 
tasks form the primate cognition test battery (Herrmann et  al. 2007), and involve 
food moving out of sight to join ‘plates’ with visible numbers such that success 
involves choosing, for example, 0 + 3 over 1 + 1.

Tool use tasks test the agent on its ability both to use tools, and to select tools 
appropriately. Figure 3 shows three examples of tool use tasks. The first is adapted 
from the string pulling paradigm and tests (Jacobs and Osvath 2015). The agent 
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Fig. 3   Three of the tool use tasks in the testbed. In each it is possible to get (at least one of) the food by 
pushing some objects around
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must figure out which of the two available tools can be used to pull the food off 
the red zone. The second is an adaptation of Kohler’s famous box and banana test 
(Köhler 1917). The agent must push the box to form a platform that it can navigate 
across to get the food. The final is a version of the swing door task from the primate 
cognition test battery (Herrmann et al. 2007). In this task, there are two pushable 
boxes (that the agent can see over but cannot climb over). If the agent pushes the 
box closest to the food, then the food will move into the red zone and cannot be 
retrieved. The agent has to infer that this will happen and push the other box out of 
the way to retrieve the food.

I hope I have shown that the testbed contains relevant tests and is somewhat 
expansive. The tests can be presented such that they are unpredictable, and they 
are designed to be solvable by our human exemplars. The testbed also leads to 
an actionable research plan, with many different difficulty levels and subsets that 
can be tackled independently at first. If an agent passed all the tests then it could, 
amongst other things:

–	 Robustly choose to obtain larger food items over smaller ones.
–	 Navigate around obstructing objects (even when transparent).
–	 Find efficient paths through the environment.
–	 Navigate in a way that takes into account the locations it has previously visited.
–	 Avoid easily available small rewards when it is possible to infer that a further 

reward will become available later.
–	 Act in a way which respects the continued existence of objects that have moved 

out of sight.
–	 Maintain a useful model of the environment when inputs are removed.
–	 Choose containers with more food even when food is added after the initial pres-

entation.
–	 Use objects as tools to get inaccessible food.
–	 Choose the appropriate tool when only one has the properties required.

all from interpreting sensory inputs and acting in previously unseen situations. It 
would be hard to conclude that an agent capable of all these things is not capable of 
thinking, therefore making it an acceptable marker for the presense of thinking in 
machines. Of course, it will be a long time before we are able to build an agent that 
can pass all these tests.

6 � Current Progress

In 2019 the Animal-AI testbed was presented as a competition which had over 
$30,000 worth of prizes and ran for 4 months. More than 60 teams from around the 
world entered and over 500,000 tests were performed on the private testing server. 
All of the tests were kept secret during the competition, but the full environment was 
released, with participants able to create any kind of tests of their own to work with. 
Information was provided about the types of abilities to be tested as part of the syl-
labus required to keep the hidden tests fair.



606	 M. Crosby 

1 3

There was no expectation that anybody would solve the harder tasks in the 
competition. These are incredibly challenging. For example, the Box Bridge task 
requires an agent to identify that food is unreachable, that a ramp could potentially 
be used to get to it, and that this solution does not work at the moment but could do 
so if the conveniently placed box were pushed to the correct place. The agent must 
then execute the requisite actions within the time limit. Of course, if this task were 
known it would be relatively easy to train an agent to solve it, just like it is easy to 
hardcode answers to predictable questions in the Turing Test. The harder tests are 
included both to ensure that the testbed assessed a wide range of abilities (is relevant 
and extensive), and to confirm (for future iterations of the competition) that difficult 
tests are not susceptible to unexpected ‘shortcut’ solutions.

The top agents solved 40% of the tasks, roughly corresponding to those that were 
amenable to associative rules such as ‘head towards yellow and green and away 
from red’ with some small improvements. Between them, the top three agents also 
learned how to use ramps (but not when to use them), how to traverse around trans-
parent walls (though not 100% reliably), and how to escape from very simple mazes. 
For comparison, I get 100% on the tasks. A purely reactive agent I wrote that acts 
like a slightly more sophisticated Braitenberg vehicle responsive to green, yellow, 
and red scores 34%.

The cylinder task is a good example of a task that sits on the edge of current 
research capabilities (at least within the tight constraints of the competition). The 
best agent solved 7 of the 9 variations. In the cylinder task, food is placed in a trans-
parent cylinder orientated such that the entrances are perpendicular to the animal or 
agent. In animal studies this is preceded by trials in which the apparatus is presented 
with the entrances facing the animal, so that the animal can obtain food by moving 
directly towards it. To solve the task when the cylinder is angled perpendicularly, the 
animal must take a longer route that involves moving away from the food in order to 
eventually retrieve it. This task has been completed successfully by many animals, 
but even within a single species there can be variation in how well animals per-
form (MacLean et al. 2014). The top performing agent from the competition would 
immediately attempt a new route after bumping into the edge of cylinder, and found 
the entrance in all but the two hardest variations. Other agents would exhibit failure 
behaviour similar to some animals, repeatedly bumping into the edge of the cylinder 
until the time ran out.

The earlier categories provide increasingly difficult targest for current research. 
The best score on the detour tasks was 33% and the best on spatial elimination was 
26% , whereas 90% could be considered a plausible cut-off point for robust solutions. 
As these tasks require navigating around obstacles the Braitenburg agent scores 0 
here. Our lab is currently attempting to solve these categories with various research 
projects including improving curiosity metrics, adding episodic memory to active 
inference, learning object-level feature representations, automatically generating 
curriculum of increasing difficulty for training, and combining neural and sym-
bolic approaches. All of these seem promising directions for research, but time will 
tell which are the most fruitful for developing agents that can solve these particu-
lar tasks, and which can then be extended to the more complex tasks on the path 
towards building thinking machines.
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7 � Objections

I have suggested that the Animal-AI testbed is a better operationalisation of ‘can 
machines think’ than the Turing Test. I now consider some possible objections to 
this claim. The first set of objections are variations on the claim that a bottom-up 
approach like this misses some key elements of thought.

	1a.	 You can not ignore language as it is a key part of thinking.

This is a completely reasonable point and I concede that there are elements of 
our thinking that are impossible without language (Carey 2009). Bermúdez argues 
that while non-linguistic creatures are capable of sophisticated thinking about the 
physical environment, there are certain second-order thoughts that require language 
(Bermúdez 2017). While this may be true, we were originally interested in the ques-
tion ‘can machines think?’, and this can be answered positively even if only a subset 
of human thinking is covered—thinking about the physical environment provides 
the sufficiency condition.

Furthermore, purely language-based tests are arguably even more limited. It is a 
common argument that the capacity to think can only develop if an agent is situated 
in an environment with which it can causally interact (Pearl and Mackenzie 2018), 
which is not necessary in the standard Turing Test unless faced with a particularly 
creative judge.

Even if language remains an ultimate goal, research-wise, it seems time to give 
the bottom-up approach a try. It is more likely that language is scaffolded on our 
physical understanding of the world (at least in known exemplars of thinking) than 
the other way round. Lake et al. (2017) similarly propose a primarily non-language 
based research path for building thinking machines (Lake et al. 2017) as a pragmatic 
step forward even if, ultimately, language needs to be reintroduced.

	1b.	 The testbed is not expansive enough. You cannot ignore non-language property 
x as x is a necessary component of thinking.

It is true that the testbed is missing some key problem types, even when only 
considering experiments from animal cognition. For example, there are no tests that 
require online learning (learning after or during presentation with a new environ-
ment). The properties of all the objects are known in advance, no new objects are 
introduced for the hidden tests, and no new associations are required to be made at 
test time. Even so, the testbed still contains configurations that result in previously 
unseen combinations of objects that have new derived properties. For example, 2f 
shows 6 wall objects placed such that they form a ramp that food slowly rolls down. 
Countless such contraptions can be built within the environment.

Another possible missing feature comes from the very shallow embodiment 
involved in the environment. The agent is effectively a sphere that can push and 
bounce off objects, but do little more. This was a deliberate decision made in 
order to simplify the environment such that the easier tests are feasible and also 
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to avoid introducing too many complicating factors at once. I personally believe 
that shallow embodiment can go a long way as it is the possible interactions avail-
able to the agent that are the most important aspect of embodiment and these are 
still available. That said, as capability improves on the testbed, more complex 
agents can be introduced. Doing this too soon would make the tests too complex, 
preventing actionable research plans. Other potentially missing elements include 
social interaction and theory of mind tasks as well as any extended cultural or 
societal embedding. If these cases are truly necessary then this means that the list 
of capabilities given at the end of Sect. 5 has not been convincing.

For the purposes of the competition, we decided that these tests—which are 
already very challenging—offered sufficient evaluation of agents’ adaptability. It 
will always be possible to make the testbed more expansive and, for practical rea-
sons as well as to make research possible, a line must be drawn somewhere. It 
is hard to imagine what the architecture of an agent that solves all the tasks will 
look like. As we get closer to this time and more information about the capabili-
ties such an agent has it will become easier to assess if any currently ‘missing’ 
components are essential.

	1c.	 There is a difference in kind between humans and animals and only humans 
are capable of thinking. You cannot build up to thought from solving animal-
cognition tasks.

This is a view that has been dormant since Descartes version of it was dis-
credited and replaced by variations of Darwin’s mental continuity view. How-
ever, there has been having a recent empirically-backed resurgence in recent years 
(Penn et al. 2008; Ghirlanda et al. 2017). It should be noted that at no point do I 
need to be committed to the view that animals that pass these tests individually 
show continuity with human thought. For each of the animal-inspired tests in the 
testbed there is an example of an animal that has been claimed to pass it at a rate 
significantly above chance. However, for attribution of an associated cognitive 
ability in each case requires thorough investigation of the methods used and is not 
the aim here. The key aspects that are being used are the ideas behind the tests 
and not the results that may have been achieved or any conclusions that can be 
drawn from them alone.

More importantly, there is no one type of animal (even great apes) that has 
passed all the tests. This is largely a contingent fact that they have yet to tested, 
but ongoing work to translate the AI environment back in to testing for animals 
either via joystick control or virtual reality will hopefully provide full empirical 
support to this claim in the future. Nevertheless the full test is not to pass these 
individually, but to have a single agent that can pass all the tests. Similarly, the 
goal in the Turing Test is not to answer a single question indistinguishably from a 
human, but to hold a sustained conversation.

Even so, it could be objected that an extra leap would still be needed to get to 
a true thinking machine. But even when Penn et al. (2008) argue for a discontinu-
ity between humans and animals they suggest that “this cognitive gap must have 
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evolved largely through incremental, Darwinian processes.” This again suggests 
that the first step to human thought is an agent capable of solving the Animal-
AI testbed, from which perhaps only incremental additions will be needed to 
unlock the full range of human thought. As I have argued throughout, Animal-AI 
is an alternative, more practical, weak operationalisation that can guide research 
towards building thinking machines and not a definitive infallible test for their 
existence. There are many breakthroughs required on the path towards solving the 
complete testbed. Not least it will have to be possible to build up and reason with 
object-level properties of the environment from the sensory inputs, something 
that we currently do not know how to do robustly and that aims to bridge the gap 
between continuous and symbolic reasoning (Garnelo and Shanahan 2019).

2.	 Now that you have given all this information, hasn’t the testbed failed unpredict-
ability and become subject to Goodhart’s law?

This is a good point, and it is correct that the now fully released testbed no longer 
constitutes a good operationalisation because it fails unpredictability. Releasing the 
full set was the best way to allow research on the environment to progress as fast as 
possible. Of course, with access to all the information it is both much easier to solve 
(though still will require many innovations), and no longer a good operationalisa-
tion. A new set of hidden tests is scheduled for release in 2021, including new sce-
narios to solve that require reasoning steps that do not exist in the original dataset. 
This way unpredictability can be regained, and at the same time improvements and 
new types of tests can be added.

3.	 Better alternatives for bottom-up tests already exist.

In AI, there have been many new test environments developed in recent years. 
There has also been a move towards more open-ended testbeds that require agents 
to learn the kinds of skills tested for in Animal-AI. These can be arranged in terms 
of how unpredictable the tests they contain can be. At one end of the spectrum are 
environments like CoinRun (Cobbe et al. 2018) and Obstacle Tower (Juliani et al. 
2019), which use procedural generation to create previously unseen levels for test-
ing. Often, generated levels are used to train on. Whilst these will not match exactly 
the ones used for testing, they are generally created by the same generative process 
making them i.i.d. under the standard usage. At the other end of the spectrum, many 
modern machine learning environments are designed to be customisable, so that 
o.o.d. tests can be generated for them by hand. For example, the previously men-
tioned DeepMind lab (Beattie et al. 2016) can have many levels built for it, as can 
Microsoft’s MALMO research platform, which is built on top of the block-based 
world of Minecraft (Johnson et  al. 2016). The video game definition language 
(VGDL) takes this a step further and is used in the General Video Game AI compe-
titions to generate novel games to solve (Perez-Liebana et al. 2016). Each of these 
is a step in the right direction for AI, but none intend to fill the role claimed here for 
Animal-AI.
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Perhaps the best existing candidate for meeting our criteria of an operationalisa-
tion of Turing’s question is the Abstraction and Reasoning testbed (Chollet 2019). 
This was designed as a challenge to expose elements missing from current AI 
approaches aiming at AGI. Two example problems from this testbed are shown in 
Fig. 4. In this test, a few simple grids of colours are presented with representative 
input–output pairs that exhibit some rule for transforming input to output. The test 
is to infer the rule and produce the correct output for a new input after seeing only a 
few examples. For example, in Fig. 4, a human might articulate the rule for the first 
problem as ‘you place the strip that’s underneath on top’. This is easy only when 
using a natural object-based interpretation of the image. The second test is more 
complicated. The rule appears to be to place a blue block in a 3 × 3 grid depending 
on the number of unfilled squares in the ‘glass’ (note that the grid sizes of each input 
example are different). Again, this requires a very heavyweight interpretation of the 
image; even the colours used seem to help. Note that it is unclear what to do in this 
case when presented with 5 unfilled levels, but the solution only requires 1 so avoids 
this ambiguity.

Figure 4 shows just 2 of the 800 released samples. The full set contains a large 
range of different types of abstraction involved making the test expansive, at least 
in terms of abstract reasoning. 200 tests have been kept back as hidden tasks to be 
used in an ongoing competition in a similar process that I have argued is neces-
sary for unpredictability. This testbed was also presented as a competition, with the 
top result being ≈ 20% success on unseen problems. This kind of figure, like for 

Fig. 4   Two problems from the abstraction and reasoning challenge. After being presented with the first 
n − 1 input–output pairs and the n’th input, you must provide the correct output
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Animal-AI, suggests the testbed is suitable for leading to actionable research. There 
is a long way to go, but it is possible to get some purchase on the problem. In terms 
of being solvable by exemplars, the testbed may even be a little too complicated as 
problems such as the second in Fig.  4 are tricky even for humans used to having 
their thinking abilities tested. In Sect. 2 I argued that the test should aim for the low-
est common denominator amongst exemplars of the property at hand.

The relevance of this testbed depends on the possibility for these abstract aspects 
of thinking to be isolated from the kinds of embedded interaction I have suggested 
are necessary underpinnings of thought. It is relevant to note that the winning entry 
on this testbed was a program that searched through combinations of a list of 142 
common transformations to the grids that was compiled by hand from working 
through the released examples. It is unclear just how far such a method can get and it 
is unlikely that even the most sophisticated version of this approach would be able to 
‘solve’ the testbed. Nevertheless, there is a strong difference between how a human 
solves the tests (a process which includes ‘thinking’) and how an algorithm might. 
It is less clear that there will be such a difference between a hypothetical agent that 
solves Animal-AI and a human solving the same problems. The Abstraction and 
Reasoning challenge was intended as a measure of intelligence, and not of ‘thinking’ 
in machines, but I present this discussion to further motivate the need for a bottom-
up approach with tests built up from sensory information.

4.	 This is a very bio-centric account.

Finally, I will briefly address the concern that this is a very bio-centric account 
of what it takes to be a thinking machine. Should I have been attempting to give a 
general intelligence test, then this would be a fair objection. However, that was not 
the intention here, and neither do I believe was it the intention in Turing (1950), 
despite the misleading title of his article. Whilst abstract definitions and measures 
of intelligence can be given (Legg and Hutter 2007; Hernández-Orallo 2000), it is 
also possible to link the concept to an entities ability to interact with its environment 
(Wang 2019). As we move from intelligence to thought, it becomes harder to keep 
the discussion purely abstract. I expect we will only ever be able to recognise the 
capacity for thought in systems that can interact with their environment in ways that 
we can interpret as purposeful in some sense. This makes it sensible to test for it in 
environments that share properties (such as their intuitive physics) with our own and 
to rely, as I have done in this paper, on the properties of our only known exemplars 
as a guide.

8 � Conclusion

I started with the question ‘can machines think?’. Like Turing, I quickly discarded it 
in favour of an empirically verifiable test, designed to be closely related to the origi-
nal question. Because of the ill-defined nature of the initial question, and because it 
is a hypothetical question about future machines I argued that this move is one of 
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weak operationalism. The original question is replaced with an imperfect empirical 
measure that picks out systems that are thinking machines. As the move is imperfect, 
the measure must have pragmatic value whilst still being as accurate as possible.

To be accurate I argued that the test needs to be relevant, expansive, and solv-
able by exemplars. To be useful it needs to be unpredictable and lead to action-
able research. Turing’s test does not score well against these conditions, primarily 
because it sets the bar too high. It is important that as many exemplars as possible 
can solve the test otherwise it will be too exclusive. If we assume that our set of 
exemplars is all humans above a certain age, then a reasonable set of tests that they 
can be expected to be able to solve are those that have been found to be solvable by 
non-human animals. Of course, there are tests that non-human animals can pass that 
humans cannot, and these are excluded.

The Animal-AI testbed combines an extensive set of animal cognition tasks into 
an environment that is designed to be amenable for research in AI. I showed that the 
test holds up to the research community’s attempts to solve using current methods 
in AI through an open competition. If the testbed had been solved here then this 
would likely be due to a flaws in its design and not due to the unexpected existence 
of thinking machines. Fortunately, this did not happen.

If the goal of AI is to build general intelligence (AGI), then it is unclear if the 
route it should go down involves solving the tasks in Animal-AI. Solving the tasks 
presented here certainly does not directly help with solving games like Go or chess 
or to build systems capable of working with large sequences of symbols. On the 
other hand, if the goal is to build thinking machines, then solving Animal-AI is not 
only a sensible goal, but one that will likely also teach us more about what it is like 
to be thinking machines ourselves. It may even turn out that this is a necessary com-
ponent of AGI, and that the progress we’ve seen to date on narrow intelligence tasks 
is held back by the inability to solve the simple physical tasks that many animals are 
capable of.

After 70 years we can see a little further. There is still plenty that needs to be 
done.
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