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Abstract
As AI Systems become increasingly autonomous, they are expected to engage in 
decision-making processes that have moral implications. In this research we inte-
grate theoretical and empirical lines of thought to address the matters of moral rea-
soning and moral uncertainty in AI Systems. We reconceptualize the metanorma-
tive framework for decision-making under moral uncertainty and we operationalize 
it through a latent class choice model. The core idea being that moral heterogene-
ity in society can be codified in terms of a small number of classes with distinct 
moral preferences and that this codification can be used to express moral uncertainty 
of an AI. Choice analysis allows for the identification of classes and their moral 
preferences based on observed choice data. Our reformulation of the metanormative 
framework is theory-rooted and practical in the sense that it avoids runtime issues 
in real time applications. To illustrate our approach we conceptualize a society in 
which AI Systems are in charge of making policy choices. While one of the systems 
uses a baseline morally certain model, the other uses a morally uncertain model. We 
highlight cases in which the AI Systems disagree about the policy to be chosen, thus 
illustrating the need to capture moral uncertainty in AI systems.

Keywords Morality · Uncertainty · Metanormative Theory · Artificial Intelligence · 
Discrete Choice Analysis · Latent Class Choice Model

1 Introduction

The inner workings and innuendos of morality remain obscure yet the design of a 
moral compass for Artificial Intelligence (AI) Systems is pressing. The modern AI 
System benefits from robust computational power and sophisticated algorithms to 
feed on data for its own learning and adaptive processes thus becoming increas-
ingly autonomous while, at the same time, engaging in complex decision-making 
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processes. Such complexity is aggravated by the potential moral dimension of deci-
sions and there are concerns about whether these systems will uphold moral values 
(Dignum 2017).

A number of cases where decisions made by AI Systems have morally problem-
atic implications have been discussed in the literature. The archetypal case is the 
autonomous vehicle (AV) moral dilemma, a philosophical situation, modeled after 
the trolley problem thought experiment (Thomson 1984; Foot 1967), in which the 
AV is required to make a moral choice between actions in traffic that will result in 
different combinations of lives saved and sacrificed (Bonnefon et  al. 2016; Awad 
et al. 2018; Goodall 2016; Lundgren 2020; Himmelreich 2018; Wolkenstein 2018; 
Keeling 2020). In the services industry it was reported that a machine learning algo-
rithm used by Amazon, which was eventually dropped, penalized female applicants 
(Fritz et  al. 2020; Maedche et  al. 2019). Another well explored case is related to 
the use of COMPAS (Correctional Offender Management Profiling for Alternative 
Sanctions), a machine learning based algorithm used in recidivism risk calculations 
for parole and bail in the U.S justice system, which was reported to be racially biased 
(Fritz et al. 2020; Rudin 2019; Flores et al. 2016; Feller et al. 2016; Wexler 2017).

Theoretical and empirical lines of thought have emerged in the literature to 
resolve issues associated with moral reasoning in and by AI systems. These 
researches shape Machine Ethics, a controversial ethical field, which aims at 
implementing ethical principles and moral decision-making faculties in machines 
to ensure that their behavior toward human users and other machines is ethically 
acceptable (Anderson and Anderson 2011; Allen et al. 2006; van Hartskamp et al. 
2019; Hunyadi 2019; Poulsen et al. 2019).

In theoretical work, there appears to be a general consensus that concep-
tual agreement regarding the moral machinery of artificial agents should precede 
design endeavors. This has led to a renewed interest in normative ethics work that 
spans several domains of knowledge and research. Prospects were made for moral 
machines based on moral theories, such as deontology and consequentialism (Allen 
et al. 2000; Anderson et al. 2004; Powers 2006; Wallach et al. 2008; Wallach and 
Allen 2008; Tonkens 2009; Anderson and Anderson 2011) but the problem of moral 
disagreement between competing moral theories and conflicting moral judgments 
was never surmounted (Bogosian 2017). A solution that has been advanced in more 
recent literature is to design AI Systems to be fundamentally uncertain about moral-
ity (Bogosian 2017; Brundage 2014; Dobbe et al. 2019).

Decisions made by these systems within the realm of moral uncertainty would 
be based on the assumption that there is no certainty about which moral theory 
is correct. A particular theoretical framework for decision-making under moral 
uncertainty developed by William MacAskill (MacAskill 2014) has been out-
lined within the domain of AI morality by Kyle Bogosian (2017). It is based 
on the metanormative notion that moral uncertainty can be conceived as a vot-
ing problem among moral theories. The resulting moral preference of the AI 
is then a function of the credence in particular moral theories weighted by the 
moral acceptability (“choice-worthiness”) of an action under each theory. This 
translates into an ordering of actions that maximizes overall choice-worthiness 
(MacAskill 2014, 2016; MacAskill et  al. 2020; Bogosian 2017). Because this 
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framework treats moral uncertainty as a voting problem among moral theories, 
it overcomes common objections of incomparability and incommensurability of 
moral theories and moral judgments. By allowing AI systems to act in accordance 
with the diverse values endorsed by humans, the system accommodates the diver-
sity of moral values in its moral decisions (Nissan-Rozen 2015; Żuradzki 2015; 
MacAskill 2014, 2016; Bogosian 2017).

Empirical attempts to address and embed moral reasoning in AI Systems 
rely on the idea that human morality should be reflected in AI moral reasoning. 
Human morality would first need to be empirically identified and subsequently 
embedded in the AI system (Bonnefon et al. 2016; Awad et al. 2018; Lin 2016; 
Zhao et  al. 2016; Bergmann et  al. 2018; Faulhaber et  al. 2018). In the Moral 
Machine Experiment, a particularly impressive empirical research endeavor in 
which preference data of 1.3 million respondents from various regions of the 
world was compiled in the context of moral dilemmas, it was suggested that the 
relative agreement found is a positive indicator for consensual morality in AI 
(Awad et al. 2018). Although this notion of moral agreement is indeed attractive 
from a pragmatic viewpoint, it has also raised some criticism (Bigman and Gray 
2020; Harris 2020). Other studies have made attempts to capture moral heteroge-
neity across individuals, inspired by the above mentioned line of theoretical argu-
mentation. This has, however, proven to pose severe practical challenges in terms 
of empirical operationalization. Most pressingly, capturing every preference or 
vote gives rise to practical runtime problems (which could be particularly prob-
lematic in cases where the AI has to make split-second decisions), yet, averaging 
preferences or votes into one preference profile (Noothigattu et al. 2018) comes 
with the risk of failing to properly account for marginal preferences.

This paper contributes to the theoretical and empirical strands of literature, 
which focus on embedding moral values and judgments into AI systems, by pro-
viding a theory-rooted yet empirically practical approach to capture society’s 
moral heterogeneity in a morally uncertain AI system. Our approach builds on 
the current theoretical understanding that moral uncertainty is paramount to 
the endeavor of implementing moral reasoning in AI Systems and it is practical 
by avoiding runtime issues and not requiring averaging efforts. We propose to 
generate such moral uncertainty by re-conceptualizing and operationalizing the 
metanormative framework for decision-making under moral uncertainty, briefly 
introduced earlier, as a utility-based latent class discrete choice model.

Moral heterogeneity is captured through a small set of latent classes, each with 
its own distinct moral preferences, which makes this theory-rooted approach for 
moral decision-making of AI systems practical in terms of runtime and interpret-
ability. Without loss of generality we use a small-scale dataset that resulted from 
a choice experiment to provide an illustration in which an AI System makes pol-
icy choices on behalf of societies based on the conflicting moral preferences of 
latent classes in society.

The novelty of this work is the use of discrete choice analysis to codify human 
(moral) preferences and decision rules in order to embed these into a (moral) AI 
System and, moreover, an empirical illustration of moral uncertainty.



218 A. Martinho et al.

1 3

With this research we expect to contribute to the Machine Ethics and Artificial 
Moral Agents (AMA) literature (Anderson et  al. 2004; Anderson and Anderson 
2011; Allen et al. 2006; Floridi and Sanders 2004; Poulsen et al. 2019; van Wyns-
berghe and Robbins 2019; Cervantes et al. 2020), as well as the moral uncertainty 
literature, which has mainly explored theoretical case studies (Lockhart 2000; 
MacAskill et al. 2020), and also to broader lines of research emphasizing the need to 
embed values into AI (van de Poel 2020; Klenk 2020).

The remainder of the paper is organized as follows. Section two explains at a con-
ceptual level how the recently proposed metanormative framework can be connected 
to Discrete Choice Analysis. Section three goes further by showing how an opera-
tional latent class discrete choice model can be used to codify moral uncertainty 
in AI. Sections four and five illustrate the approach in the context of a concrete 
example, where the latter section focuses on estimating the latent class model on 
choice data. Section six presents the proof of concept, by equipping AI systems with 
a moral framework under the assumptions of normative certainty versus normative 
uncertainty, building on the modeling efforts presented in preceding sections. Sec-
tion seven draws conclusions and puts forward avenues for further research.

2  A Metanormative Framework and its connection with Discrete 
Choice Analysis

The metanormative framework, as construed by MacAskill and Bogosian, produces 
an ordering of actions in terms of their choice-worthiness in a particular decision-
situation (Bogosian 2017; MacAskill 2014). The key elements in the decision-situa-
tion, i.e. a context in which an agent is required to make a decision, are the decision-
maker, which in this research is an AI System defined as a regularly interacting or 
interdependent group of units which form an integrated structure that employs AI in 
any of its forms (learning, planning, reasoning, natural language processing, percep-
tion) separately or combined to perform a function while continuously interacting 
with the environment (Backlund 2000); a set of possible actions that the decision-
maker has the power to bring about; the normative theories taken into account by 
the decision-maker; a credence function that represents the decision-maker’s beliefs 
or trust in the various normative theories; and the choice-worthiness, which is the 
normative ordering of actions after all relevant considerations have been taken into 
account (MacAskill 2014; Bogosian 2017).

At the core of this metanormative framework for capturing moral uncertainty 
is the notion that the choice-worthiness of an action is determined by its choice-
worthiness according to various competing normative or moral theories and the cre-
dence of the decision-maker in each of those theories. More precisely, the choice-
worthiness of an action is the credence-weighted average of the choice-worthiness 
of the action in all of the individual theories. Using a slightly adapted notation, this 
core can be formalized as W(ai) =

∑T

t
[C(t) ⋅Wt(ai)] where W(ai) denotes the total 

or over-all choice-worthiness of an action; ai is an action from the exhaustive set A 
of mutually exclusive actions {a1...ai...aJ} where J is the cardinality of the choice 
set; Wt(ai) denotes the choice-worthiness of an action given a particular normative 
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theory t which is taken from the set T of available theories; and C(t) denotes the cre-
dence of the theory1.

The operationalization of this formulation entails two important challenges 
regarding the measure or inference of Wt(ai) , i.e. the choice-worthiness of an action 
given a moral theory, and the measure or inference of C(t) , i.e. the credence of a 
moral theory. We present Discrete Choice Analysis as an intuitive method to make 
these inferences in an empirically rigorous way. A reconceptualization of the for-
mulation introduced above is required so it can be re-positioned into the Discrete 
Choice Analysis domain. Firstly the choice-worthiness of an action given a moral 
theory is re-conceptualized as the utility of an action given a moral theory. Although 
this variation is in fact a matter of semantics, it facilitates the connection with the 
micro-econometric framework of Discrete Choice Analysis. Further details on the 
definition and operationalization of the concept of utility will be provided in the 
upcoming sections. A second and more relevant step is the re-conceptualization of 
the credence of a theory into the share of the population that adheres to that theory 
or, equivalently, the probability that a randomly sampled individual from the popu-
lation adheres to the theory. It is therefore implicitly postulated that C(t) ∈ [0, 1]∀t , 
and that 

∑T

t
C(t) = 1 which is in fact congruent to the construction of credence in 

the metanormative framework as an “assignment of probabilities to various moral 
theories of being correct” (Bogosian 2017).

To avoid confusion, a new notation (V for utility of an action and P for the prob-
ability that a sampled individual adheres to a theory) is adopted thus leading to the 
following formulation for the utility of an action: V(ai) =

∑T

t
[P(t) ⋅ Vt(ai)] . The 

challenge is to measure or infer P(t) and Vt(ai) . As elaborated below, the domain of 
Discrete Choice Analysis, and its sub-branch of latent class discrete choice mod-
eling, offers a powerful approach to tackle this challenge. As an empirical base, we 
use experimental choice data (observed choices made by human decision-makers in 
a choice situation) to estimate the probability that an individual belongs to a specific 
class associated with a particular moral theory P(t)  as well as the utility of an action 
ai given a moral theory Vt(ai).

3  Operationalization of the Metanormative Framework using 
Discrete Choice Analysis

As mentioned above, the model that will be used to operationalize the re-concep-
tualized metanormative framework is drawn from Discrete Choice Analysis. The 
key idea in this field is that a choice provides a signal of the latent utility of the 
choice options or alternatives (Samuelson 1938, 1948) and that the utility that the 

1 It is acknowledged that this formulation is a restricted version of the metanormative framework pro-
posed by MacAskill and Bogosian in that their original framework features various important extensions 
to account for different types of moral theories. For now, however, the focus of this research is on what 
it is believed to be the core of the metanormative framework thus opening an avenue for further research 
that accommodates its various extensions.



220 A. Martinho et al.

1 3

decision-maker ascribes to each alternative in the choice set can be inferred by 
means of econometric methodology (McFadden et al. 1973; Train 2009; Ben-Akiva 
et al. 1985). For this purpose, a choice model has to be built that explicitly relates 
utilities to choices in such a way that utilities can be inferred from the choices in a 
statistically rigorous process.

In a broad sense, discrete choice theory generates mathematical models that for-
mally describe and explain the decision-process of an agent or a group of agents 
that make a choice between two or more mutually exclusive discrete alternatives 
from a finite choice set. A choice model is defined in terms of the input variables it 
includes, their associated parameters, a decision rule, and an error structure. These 
models are probabilistic in the sense that they generate choice probabilities for each 
alternative in a choice set. This means that choice models reflect not only that deci-
sion-makers are to some extent inconsistent or random in their behavior but also 
that the model does not capture all information that may be relevant for every single 
choice, as well as the fact that preferences differ across individuals.

We present a brief notation of a choice model to elucidate the relation between 
latent class based discrete choice theory and the re-conceptualized metanormative 
framework. The model will be based on Random Utility Theory, which assumes 
that the utility of an action ai is the sum of observable (deterministic or system-
atic utility) and unobservable (random utility) components of the total utilities: 
Uin = Vin + �in (Manski 1977; Walker and Ben-Akiva 2002; Azari et al. 2012).

The unobservable component in Random Utility Theory is an error term that cap-
tures noise. Although we will not elaborate on the intricacies of this disturbance 
term, in the remainder of this paper it is important to note that depending on the 
assumed distribution of the term, there are different formulations of the probability 
that a randomly sampled individual from the population chooses ai from the set of 
actions A. The by far most used formulation is the so-called Logit function which 
assumes that errors are extreme value distributed type I with variance �

2

6
 . In this for-

malization of the error term, the probability that ai is chosen is written as: 
P(ai) =

exp(V(ai))
∑J

j=1
exp(V(aj))

 . In a process of maximum-likelihood based optimization the 

utilities are obtained for each alternative which together (through their implied 
choice probabilities) make the observed choices the most likely. The result of this 
process is an econometric estimate V̂(aj) for every alternative j in A, including i.

Whereas conventional choice models, like the Logit model introduced above, 
implicitly assume that the utilities of the population can be represented in one sin-
gle estimate for each alternative, the latent class approach alleviates this restrictive 
assumption by postulating that there may exist several latent classes in the popula-
tion, with homogeneous utilities within each class, which are different from those in 
other classes. In other words, the latent class choice model is based on the assump-
tion that a number of segments or classes exist within the population featuring dif-
ferent preferences albeit internally relatively homogeneous (Greene and Hensher 
2003). These models provide insights into heterogeneity of preferences and decision 
rules of people while accounting for the fact that different segments of the popu-
lation have different needs and values and, in consequence, may exhibit different 
choice preferences. Since it is not known a priori which decision-makers belong to 
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each class, the segments are treated as latent rather than predetermined by the ana-
lyst. This means that the choice model provides a solution to the problem of unob-
served heterogeneity. It determines simultaneously the number of (latent) segments 
and the size of each segment and it also estimates a separate set of utility parameters 
for each segment (Magidson et  al. 2003; Magidson and Vermunt 2004; Kroesen 
2014; Araghi et al. 2016).

The choice probability given by a latent class choice model is written as: 
P(ai) =

∑T

t

�

P(t) ⋅ Pt(ai)
�

 . This means that the probability that ai is chosen is the 
probability that a randomly sampled individual belongs to a class t (this is called the 
class membership probability and is denoted by P(t) for individuals in class t ∈ T  
where T is the set of all mutually exclusive and commonly exhaustive classes of 
decision-makers2) multiplied by the probability that ai is chosen by a decision-maker 
from a particular class t ( Pt(ai) ), summed over all classes. Estimation of such a latent 
class choice model results in not only an estimate of the probability that a randomly 
sampled individual belongs to a class (i.e., the share of the population that belongs 
to that class) (P̂(t)) , but also an estimate of class-specific utility for each alternative j 
and for each class t (V̂t(aj)).

Revisiting re-conceptualized metanormative formulation introduced above 
V(ai) =

∑T

t

�

P(t) ⋅ Vt(ai)
�

 it is now clear that through Discrete Choice Analysis 
econometric estimations of the two crucial elements in this formula can be obtained, 
leading to the following discrete choice analysis-based formulation of the metanor-
mative framework: V̂(ai) =

∑T

t

�

P̂(t) ⋅ V̂t(ai)
�

 , which gives the estimated utility of 
action i, taking into account that people in different classes ascribe different utilities 
to that action.

4  Implementation of the Discrete Choice Analysis‑based Formulation 
of the Metanormative Framework

To guide the process of Discrete Choice Analysis for the implementation of the 
metanormative framework, we use a two-pronged approach with long pedigree in 
the applied choice literature. It comprises the specification of the utility function and 
the collection of data to allow for a statistically rigorous estimation of the utilities of 
alternatives. While the formulations presented in the previous section are general, 
we will now interpret them in light of the data we use for our empirical proof of con-
cept. These data resulted from a choice experiment that took place in 2017 which 
entailed a public consultation for a massive national transport infrastructure scheme 
among car commuters in The Netherlands. The scheme was specified in terms of its 
consequences on a number of dimensions relative to the status quo (Chorus et al. 
2018).

For the utility specification, we build on the seminal work in consumer theory 
by Lancaster, who postulated that utility is derived not from goods but rather from 

2 The class membership probability is computed by a logit function which ensures that 
∑T

t
P(t) = 1.
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properties or characteristics of the goods (Lancaster 1966), and we follow the util-
itarianism view on ethics by considering the utility of an action ai to be a linear 
function of the action’s consequences: Vt(ai) = �it +

∑

m �mt ⋅ xmi . Here, Vt(ai) is the 
utility ascribed by a member of class t to action ai ; xmi is the mth consequence of 
action ai ; �mt is the weight attached by a member of class t to that consequence; and 
�it is the remaining – i.e., not associated with any observed consequence – utility of 
the action. Importantly, a vector of weights or � is considered to represent a multidi-
mensional moral theory. Further research is to be explored using more sophisticated 
behavioral representations such as Random Regret Minimization or Taboo models 
instead of a linear utility function (Chorus et al. 2017; Chorus 2010), as such allow-
ing for a richer representation of various moral preference structures and decision 
rules.

Concerning the data collection, it is noted that choice experiments are widely 
used in the applied choice domain (Louviere et  al. 2000). The key point in these 
experiments is to systematically vary the consequences (attributes) of actions (alter-
natives) and construct choice tasks by combining different hypothetical actions. 
Choices between these, or between one action and an opt out (status quo action), 
then give maximum information about preferences which allow for statistically 
efficient estimation of the weights �mt for each consequence �it . The data which we 
use in our empirical proof of concept resulted from a full factorial choice experi-
ment3 in which 99 respondents, composing a roughly representative sample of the 
Dutch regular car commuters, were presented with a series of binary choice situa-
tions with a clear status quo (current situation) and an alternative (a proposed infra-
structure investment scheme). The infrastructure investment scheme was specified 
in terms of its positive or negative consequences with respect to vehicle ownership 
tax, travel time for the average commute trip, as well as the number of seriously 
injured in traffic, and the number of traffic fatalities4. The final experiment resulted 
in 99 × 16 = 1584 choice observations (Table 1 and Table 2 in Supplementary Infor-
mation) (Chorus et al. 2018).

The utility of a particular infrastructure transport policy is written as 
Vj =

∑

m �m ⋅ xjm = �tax ⋅ taxj + Btime ⋅ timej + �inj ⋅ injj + �fat ⋅ fatj . The utility of the 
opt out (status quo) option is merely defined in terms of a so-called alternative spe-
cific constant (ASC) which represents a generic preferences for or against the status 
quo versus an infrastructure investment scheme. In the sampled population, different 
classes are found featuring a different vector of � , which implies a different weigh-
ing of the consequences, thus defining the different trade-offs the members of a class 
are willing to accept. Because such trade-offs involve the well-being of humans, we 
postulate that we can use the vector of � to infer the morality of the classes in this 
particular context.

3 A description of the full set of actions i = 1 to i = 16 is found in the the Supplementary Information.
4 The consequences were effect-coded as [−1] for a decrease in the level of attributes and [1] for an 
increase in the level of attributes (Table  10). For example [−  1] on vehicle ownership tax means a 
decrease of 300 euros in the vehicle ownership tax per year.
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It is relevant to note that, while our operationalization is well aligned with a con-
sequentialist view on ethics, in this research we refrain from relating this morality 
vector to particular moral theories, such as deontology or consequentialism and their 
ramifications (Hooker 2003; Shafer-Landau 2012). Rather, we explore the subtle dif-
ferences in contextual moral preferences that characterize different classes and are 
captured in the vector of � that defines each class. The empirical work to implement 
the discrete choice analysis-based metanormative theory is described below, fol-
lowed by a proof of concept that allows us to investigate whether the policy choices 
made by an AI System, based on the conflicting input of different sized moral 
classes, would differ from the same choices made by an AI System that overlooks 
such differences (Tables 1 and 2). 

5  Empirical Analysis

We describe the empirical approach that is employed to capture and investigate the 
relevance of moral uncertainty in AI decision-making by first elaborating on the 
model estimation, followed by a brief characterization of the classes in the model, 
and an inspection of the utility of actions per class.

5.1  Model estimation

To decide on the optimal number of latent classes, consecutive models with one 
through four classes were estimated and compared on the dataset that resulted 

Table 1  Attributes in choice 
experiment

Attributes Increase/decrease

Vehicle ownership tax (Euros) 300 per year
Travel time (Minutes) 20 per working day
Non-fatal traffic injuries 100 per year
Traffic fatalities 5 per year

Table 2  Example of a choice task in the choice experiment

Proposed transport policy

Vehicle ownership tax (per year, for each car 
owner including yourself)

300 euro less tax

Travel time (per working day, for each car com-
muter including yourself)

20 minutes less travel time

Number of seriously injured in traffic (per year) 100 seriously injured more
Number of traffic fatalities (per year) 5 traffic fatalities more
Your choice   ◻ I support the proposed policy

  ◻ I oppose the proposed policy
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from the choice experiment described above. In general, the decision to select a 
certain number of latent classes is a trade-off between model fit (in terms of the 
log-likelihood) and parsimony (in terms of the number of classes/parameters) and 
interpretability.

Typically, such a decision is therefore guided by an information criterion, which 
weighs both model fit and parsimonity. In the context of latent class modeling, the 
Bayesian Information Criterion (BIC) criterion has been shown to perform well 
(Nylund et al. 2007). The BIC is a fit criteria for model selection that measures the 
trade-off between model fit and complexity of the model (Neath and Cavanaugh 
2012). The equation used to calculate this criterion is BIC = (lnN) ⋅ k − 2(lnL) 
where N is the number of recorded measurements (e.g. choices), k is the number of 
estimated parameters, and L is the maximum value of the likelihood function for the 
model. A lower BIC indicates a better model.

In the present application, this statistic indicated that the optimal solution is 
one with four or more classes, which would be too many to interpret meaningfully 
(Table 3). A straightforward and practical alternative to the BIC is to compute the 
percentage increase in the log-likelihood of each model compared to the baseline 
one-class model. This measure reveals that after three classes there is no substantial 
increase in the relative fit of the model (LL increase > 4%).

5.2  Size and Features of the Classes

The classes that compose the three-class model have different sizes and defin-
ing features. For the assessment of the size of the classes, we recall the discrete 
choice analysis-based formulation of the metanormative framework that was 
introduced above: V̂(ai) =

∑T

t

�

P̂(t) ⋅ V̂t(ai)
�

 . The estimate of the probability P̂(t) 
that a randomly sampled individual belongs to class t equals the relative share of 
the population that belongs to that class (Table 4). A vector of � estimated in the 

Table 3  BIC and Log-
Likelihood function models 1-4

MODEL BIC LOG-LIKELI-
HOOD FUNC-
TION

Model 1 class 1479.290 − 721.226
Model 2 classes 1400.273 − 659.614
Model 3 classes 1369.509 − 622.129
Model 4 classes 1360.966 − 595.754

Table 4  Class membership 
probability for classes in three-
class model

CLASSES CLASS MEMBER-
SHIP PROBABIL-
ITY

Class 1: Financially-driven 0.14
Class 2: Want-it-all’s 0.65
Class 3: Efficient 0.22
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empirical process is associated to each class allowing us to understand the key 
defining features and the subtle differences in moral preferences that characterize 
the different classes (Table 5). We provide below an interpretation of the features 
of each class, along with the full estimation and interpretation of the parameters, 
that define each class (Table 5).

Class 1: Financially-driven The first class is the smallest segment in the three-
class model (≈ 14%) . Its members care only about lowering vehicle ownership 
taxes. We therefore infer that members of this class are financially-driven. All 
parameters have negative signs but only vehicle ownership tax is statistically sig-
nificant, which means that for the members of this class the utility of a policy 
decreases if it features an increase in the vehicle ownership tax.

Class 2: Want-it-all’s  The second class is the largest segment in the three-
class model (≈ 65%) . Its members show a generic disposition against policies and 
a preference for lower vehicle ownership taxes, lower travel time, lower number 
of seriously injured in traffic, and lower number of traffic fatalities; they are espe-
cially concerned with lowering the number of seriously injured in traffic. We infer 
that members of this class are maximizers that want it all and believe that changes 
should only occur if a substantial improvement is secured, specifically in terms 
of road safety. All parameters are statistically significant and, with the exception 
of the alternative specific constant (ASC) for the status quo option, have nega-
tive signs. This means that for the members of this class, the utility of a policy 

Table 5  Estimated parameters in 
the classes of three-class model

Name Value Std err t-test p-value

Class 1: Financially-driven
ACS Oppose − 0.519 0.359 − 1.44 0.15
BETA Fat − 0.561 0.298 − 1.88 0.06
BETA Inj − 0.209 0.288 − 0.73 0.47
BETA Tax − 2.56 0.339 − 7.54 0
BETA Time − 0.119 0.253 − 0.47 0.64
Class 2: Want-it-all’s
ACS Oppose 1.52 0.136 11.16 0
BETA Fat − 1.41 0.14 − 10.09 0
BETA Inj − 1.92 0.169 − 11.32 0
BETA Tax − 0.967 0.117 − 8.25 0
BETA Time − 0.328 0.111 − 2.97 0
 Class 3: Efficient
ACS Oppose 1.24 0.222 5.59 0
BETA Fat − 0.36 0.189 − 1.9 0.06
BETA Inj − 0.745 0.186 − 4 0
BETA Tax − 1.02 0.189 − 5.38 0
BETA Time − 1.72 0.264 − 6.52 0
s2 1.54 0.333 4.62 0
s3 0.442 0.425 1.04 0.3
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decreases if it features an increase in the vehicle ownership tax, travel time, num-
ber of seriously injured in traffic, or number of traffic fatalities.

Class 3: Efficient The third class accounts for ≈ 22% of the sampled popula-
tion. Members of this class care mostly about low travel time and therefore we infer 
that they are (time-) efficient. With the exception of the ASC for the status quo, all 
parameters have negative signs and are all statistically significant, except for the traf-
fic fatalities parameter which has low significance. This means that the members of 
this class show a disposition against policies and consider that the utility of a policy 
decreases if it features an increase in the vehicle ownership tax, travel time or num-
ber of seriously injured in traffic.

5.3  Utility of Actions

We have so far determined the number of latent classes in the model and provided 
a brief description of each class. Now we proceed to inspect the utility and rank 
of actions (i.e. policies) in the three-class model and in each of its classes. We 
recall once again the discrete choice analysis-based formulation of the metanor-
mative framework that was introduced above V̂(ai) =

∑T

t

�

P̂(t) ⋅ V̂t(ai)
�

 to accen-
tuate that the estimate of the utilities V̂t(ai) of policies in each class is given by 
Vj =

∑

m �m ⋅ xjm = �tax ⋅ taxj + Btime ⋅ timej + �inj ⋅ injj + �fat ⋅ fatj . Such class-spe-
cific utilities are subsequently multiplied by the class membership probability of 
each class P̂(t) and summed over classes for the purpose of estimating the utility of 
policies V̂(ai) . To facilitate the comprehension about the utilities in the three-class 

Table 6  Utility of policies V̂(a
i
) in one-class model, three-class model, and class-specific utility of poli-

cies V̂
t
(a

i
) in classes [1-3] of three-class model

i One-class Model Three-class Model Class 1 Class 2 Class 3

1 4.327 5.471 2.93 6.145 5.085
2 2.743 3.339 1.808 3.325 4.365
3 0.523 0.479 1.39 − 0.515 2.875
4 − 0.517 − 0.719 1.152 − 1.171 − 0.565
5 − 2.473 − 3.117 − 3.968 − 3.105 − 2.605
6 2.371 3.073 − 2.19 4.211 3.045
7 1.331 1.875 − 2.428 3.555 − 0.395
8 − 0.889 − 0.984 − 2.846 − 0.285 − 1.885
9 1.703 2.141 1.57 2.669 0.925
10 0.151 0.214 − 2.608 0.371 1.555
11 2.107 2.612 2.512 2.305 3.595
12 3.287 4.273 2.692 5.489 1.645
13 1.067 1.414 2.274 1.649 0.155
14 0.787 0.941 − 3.312 1.391 2.325
15 − 1.433 − 1.919 − 3.73 − 2.449 0.835
16 − 0.253 − 0.257 − 3.55 0.735 − 1.115
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model, we compare it with the baseline one-class model (Table 6)5. This compari-
son will take a new meaning in Section 6, as we conceptualize a society in which 
AI Systems equipped with one-class and three-class rules make policy decisions on 
behalf of society.

Unsurprisingly, the policy with highest utility in both models is i = 1 which 
entails lower vehicle ownership taxes, lower travel time, lower number of injuries, 
and lower number of fatalities; followed by i = 12 which entails higher travel time 
but lower vehicle ownership taxes, lower number of injuries, and lower number of 
fatalities; and by i = 2 which entails more traffic fatalities but lower vehicle owner-
ship tax, lower travel time, and lower number of injuries (Table 6 in Supplementary 
Information). It is clear that the utility of the policies in the three-class model is 
highly influenced by the preferences of the Want-it-all’s, which make up the largest 
class in the model.

In order to measure the rank correlation of the utility of policies in the baseline 
one-class model, the three-class model, and the different classes within the three-
class model a Kendall Tau test was used (Table 7). We observe that the baseline one-
class model and the three-class model have the same ranking of policies (correla-
tion = 1.0), which raises questions about the relevance of taking into account moral 
uncertainty for the purpose of ranking actions. This will be addressed later (Sec-
tion 6) as we will randomly generate thousands of policies and evaluate the impli-
cations of moral uncertainty across simulated cases. We also used the Kendall Tau 
coefficient test the rank correlation of the utility of policies among the three classes 
in the three-class model. The ranking of the policies by the members of the class 1 
(Financially-driven) and class 2 (Want it all’s) show a low correlation (correlation 

Table 7  Kendall Tau b-test rank correlation of policies between one-class model and three-class model; 
one-class model and classes [1–3] of three-class model; and three-class model and classes [1–3] of three-
class model

Three-class model Class 1 Class 2 Class 3

One-class model 1.000 0.700 0.833 0.790
Three class model (N/A) 0.688 0.969 0.764

Table 8  Kendall Tau b-test rank 
correlation of policies between 
classes [1-3] in the three-class 
model

Class 1 Class 2 Class 3

Class 1 N/A 0.533 0.483
Class 2 0.533 N/A 0.450
Class 3 0.483 0.450 N/A

5 The parameters for the one-class model can be found in the Supplementary Information (Table 11).A 
description of the full set of actions i = 1 to i = 16 effect-coded as [−1] for a decrease in the level of 
attributes and [1] for an increase in the level of attributes can also be found in the Supplementary Infor-
mation (Table 10).
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= 0.533) similarly to the rankings of the policies by (Financially-driven) and class 3 
(Efficient) (correlation = 0.483) (Table 8).

Looking specifically at the classes within the three-class model, we observe that, 
similarly to what was reported above concerning the baseline one-class model and 
the three-class model, the policy with highest utility in all classes is i = 1 which 
entails lower vehicle ownership taxes, lower travel time, lower number of injuries, 
and lower number of fatalities. On the other hand, the policy with lowest utility in 
all three classes is i = 5 which entails higher vehicle ownership taxes, higher travel 
time, higher number of injuries, and higher number of fatalities. Moreover, by com-
puting the standard deviation of the ranks for each policy in the different classes of 
the three-class model, we determine the discrepancy in rankings among the classes 
(Table  9). Three policies registered high discrepancies in rankings: i=3 , i=7 , and 
i=13 . We remark that policy i=3 , which entails lower vehicle ownership tax and 
travel time, and higher injuries and traffic fatalities6, ranks substantially higher 
among the Efficient and Financially-driven compared with the Want it all’s. Policy 
i=7 entails higher vehicle ownership tax and travel time, and lower injuries and traf-
fic fatalities ranks much higher among Want it all’s when compared to the Efficient 
and Financially-driven. And finally policy i=13 , which entails lower vehicle own-
ership tax, higher travel time and also higher number of traffic injuries, and lower 
fatalities, ranks substantially higher among the Financially-driven when compared 
to the Efficient and in a lesser extent to the Want it all’s.

Table 9  Standard deviation 
of the ranks for each policy in 
classes [1-3] in three-model 
class

i Standard 
devia-
tion

1 0
2 1.41
3 3.40
4 2.62
5 0
6 2.62
7 3.40
8 1.41
9 1.41
10 1.41
11 1.89
12 2.36
13 2.87
14 2.87
15 2.36
16 1.89

6 We refer once again to Table 10 in Supplementary Information.
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We have shown that there is variance in the utility assigned to particular policies 
by members of different classes. These discrepancies seem to arise when policies 
involve trade-offs as opposed to policies that merely have desirable or undesirable 
outcomes, which is relevant given that policies in general tend to involve trade-offs. 
Using the same dataset we will now provide a proof of concept to further explore the 
relevance of moral uncertainty in the context of AI.

6  Proof of Concept: AI Systems Make Policy Choices on Behalf 
of Societies

To illustrate the discrete choice analysis-based formulation of the metanorma-
tive framework, we capitalize on the fact that the AI field is traditionally lenient 
to remarkable thoughts. We therefore conceptualize AI Systems that make policy 
choices on behalf of a society. And we further investigate whether differences in 
policy choices arise as a result of accounting for moral uncertainty.

Building on the work outlined in previous sections, we consider an AI System 
equipped with a one-class rule and an AI System equipped with a three-class rule 
which factors in moral uncertainty. To make a larger action space available for the AI 
Systems, we randomly generated 5000 sets with 2 policies in each set by allowing the 
consequences of the policies, i.e. xjm in the formulation of the utility of a infrastructure 
transport policy Vj =

∑

m �m ⋅ xjm = �tax ⋅ taxj + Btime ⋅ timej + �inj ⋅ injj + �fat ⋅ fatj , 
to take on random values within the interval [−1, 1] instead of taking only the 
extreme values as in the original dataset (Table 1 in Supplementary Information)7.

Fig. 1  Scatter plot of utilities of 
baseline and three-class mor-
ally uncertain model for 5000 
randomly drawn policies

-5 -2.5 0 2.5 5

-5

-2.5

0

2.5

5

7 For example [-0.5] on vehicle ownership tax means a decrease of 150 euros in the vehicle ownership 
tax per year
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The utility of each policy was estimated through the formulations introduced 
above for both the one-class baseline model (for the morally certain AI System) and 
for the three-class model (the morally uncertain AI System). The comparative value 
of the utilities of policies is interpreted as an indication of which policy is favored 
by each model and accordingly by the corresponding AI System. Although the utili-
ties assigned to policies by the morally certain and the morally uncertain AI seem to 
be similar in most cases (Fig. 1), we observed 85 cases in which there was disagree-
ment between the two models regarding the choice of the policy (Fig. 2).

In such instances of disagreement, the policy decisions of the morally uncertain 
AI system equipped with the three-class rule would contrast with the decisions of 
the morally certain AI equipped with the baseline one-class rule. Although the num-
ber of cases of disagreement is not large in this particular example it still allows us 
to hint at the potential relevance of capturing moral uncertainty. To visualize the 
contrasting policy decisions, we plotted the difference, for each of the 85 combina-
tions of policies, between the utility of the first policy and that of the second policy 
for the morally certain AI System equipped with the one-class model (horizontal 
axis) and for the morally certain AI System equipped with the one-class model (ver-
tical axis) (Fig. 2).

Out of the 85 cases mentioned above we selected three sets of policies that regis-
tered relatively high discrepancies between the utility values estimated for the base-
line (morally certain) AI and those estimated for the morally uncertainty AI. The 
first set of policies that we selected featured a time efficient and safe for injuries 
policy favored by the base AI and a safe but expensive and time inefficient policy 
favored by the morally uncertain AI (Fig. 3).

Another set of policies featured a time efficient but unsafe for fatalities policy 
favored by the base model and a safe but time inefficient policy favored by the mor-
ally uncertain model (Fig. 4).

-0.15 -0.1 -0.05 0 0.05 0.1 0.15

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Fig. 2  Policies that caused disagreement among baseline and three-class morally uncertain model
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Finally the third set of policies registering high discrepancies in utility value 
among the two competing models features a time efficient but unsafe policy 
favored by the base model and a safe but expensive policy favored by the morally 
uncertain model (Fig. 5).

These discrepancies in policies chosen by the morally certain AI and the mor-
ally uncertain AI emphasize the relevance of studying moral uncertainty and cap-
turing it in AI systems.

Tax Time Injuries Fatalities

Attributes

-1

-0.5

0

0.5

1
Policy favored by base model

Policy favored by morally uncertainty model

Fig. 3  Set of policies: time efficient and safe for injuries policy and safe but expensive and time inef-
ficient policy
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Policy favored by base model

Policy favored by morally uncertainty model

Fig. 4  Set of policies: time efficient but unsafe for fatalities policy and safe but time inefficient policy
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7  Conclusion and Discussion

As AI Systems become increasingly autonomous, they are expected to engage in 
complex moral decision-making processes. For the purpose of guidance of such 
processes, theoretical and empirical solutions within the controversial domain of 
Machine Ethics have been sought. In this research we integrate both theoretical and 
empirical lines of thought to address the matters of moral reasoning in AI Systems 
in a pragmatic yet statistically rigorous way that is firmly connected to theoretical 
considerations related to normative uncertainty in AI systems.

Our approach is built on the theoretical notion that moral uncertainty is para-
mount to the endeavor of implementing moral reasoning in AI Systems. More spe-
cifically, it employs the metanormative framework for decision-making under moral 
uncertainty, as construed by William MacAskill (2014) and Kyle Bogosian (2017), 
and re-conceptualizes it as a latent class discrete choice model. We assume that a 
number of classes featuring different preferences exist within a population where 
each class is internally relatively homogeneous in terms of its behaviors and prefer-
ences (Greene and Hensher 2003). By codifying the moral preferences and decision 
rules of different classes, and aggregating them across the population, we are able to 
obtain a moral representation for the AI System: its resulting normative uncertainty 
is embedded in the form of an empirical model of the moral heterogeneity of the 
society it represents.

In the empirical installment of our approach we specify a multi-dimensional 
utility function which represents a moral theory or set of moral preferences (i.e., 
weights attached to different criteria), and we allow this vector of weights to vary 
across classes. The final ranking of the actions available to the AI System is pro-
vided by computing the class membership weighted average of the utility of each 
action in each class. Importantly, our approach does not involve the analyst a priori 

Tax Time Injuries Fatalities

Attributes

-1

-0.5

0

0.5

1

Policy favored by base model

Policy favored by morally uncertainty model

Fig. 5  Set of policies: time efficient but unsafe policy and safe but expensive policy
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selecting classes and class sizes in the population, they rather emerge - just like the 
class-specific weights assigned to each criteria - in the process of estimating the 
choice model from observed choice data.

The discrete choice analysis-based formulation of the metanormative framework 
is theory-rooted and practical, as it captures moral uncertainty through a small set 
of latent classes, thus avoiding runtime issues which are common in applications 
that aim to capture the full level of individual-to-individual heterogeneity in the 
population.

For the purpose of illustrating our approach we conceptualize a society in which 
AI Systems are in charge of making policy choices. In the proof of concept two AI 
systems make policy choices on behalf of a society, but while one of the systems 
uses a baseline morally certain model the other uses a morally uncertain model. 
Specifically, we used our approach in a dataset that resulted from a choice experi-
ment that took place in 2017 which entailed a consideration for a massive national 
transport infrastructure scheme among car commuters in The Netherlands, having 
implications on morally salient dimensions such as the number of road fatalities. It 
was observed that there are cases in which the two AI Systems disagree about the 
policy to be chosen, which we believe is an indication about the relevance of moral 
uncertainty.

We are aware that our finding that a morally uncertain AI might in some cases 
decide differently than a morally certain AI not only validates the notion that moral 
uncertainty is a topic worthy of further investigation by the AI community, but that 
it also generates another question: in cases where the two AIs would make different 
decisions, which AI should prevail? This question is not one with a clear-cut answer, 
but the following observations and considerations could help address this matter.

First, it is important to revisit the starting point of this research: our aim was 
to present an approach to capture moral uncertainty in AI that a) has a firm theo-
retical foundation, and b) is empirically and practically feasible. To achieve both 
aims simultaneously, we proposed a latent class approach, which is a compromise 
between not acknowledging moral uncertainty at all (i.e., estimating one set of moral 
preferences to represent an entire society’s morality) and taking into account subtle 
moral differences between each and every individual in society. By allowing a small 
number of latent classes with distinct morality to emerge in a process of econometric 
model estimation, we connect to the theoretical framework of normative uncertainty, 
and avoid run-time issues which plague the estimation and application of individual-
level models. Building on this argument, we believe that, in general terms, the deci-
sions made by a morally uncertain AI (equipped with a latent class choice model of 
morality) should be preferred to the decisions made by an AI that is morally certain.

Whether or not the decisions made by a morally uncertain AI equipped with a 
limited number of latent moral classes are to be preferred over those made by an AI 
that tries to embed the morality of each individual in society (supposing that this 
would be feasible), is another matter.

Here, we propose to use the notion of Occam’s razor, which puts a premium on 
the most simple explanation behind empirical observations. In statistics, this generic 
scientific notion is operationalized in metrics such as the adjusted rho-square, the 
Bayesian Information Criterion and others, which penalize a model for the number 
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of parameters it uses to explain data. In the field of machine learning, this relates 
to the notion of regularization, which prevents artificial neural networks from over-
fitting training data-sets. Such statistical tools and metrics offer a formal, theory-
rooted approach to select one model (or: AI system) over another. For example, in 
our case, allowing for a small number of latent moral classes clearly led to a better 
explanation for the observed choice data than a model that attempts to embed all 
society’s preferences in one utility function, also after correcting for the increased 
number of parameters.

However, further increasing the number of latent classes beyond a handful inevi-
tably leads to increases in the number of parameters that no longer are offset by 
increases in explanatory power. The same holds for morally uncertain AI Systems 
that aim to capture the differences in morality between each and every individual: 
the resulting model, besides being difficult to handle in real time decision contexts, 
will most likely be statistically inferior to more parsimonious models that attempt to 
cluster individuals that are relatively speaking like-minded in terms of their moral-
ity. In sum, by employing statistical model selection techniques that appropriately 
penalize for the number of parameters used, helps the designer of the AI choose the 
optimal level of heterogeneity (uncertainty) to embed in the AI.

The novelties in this research are the idea that discrete choice analysis can be used 
to codify human morality and, as such, provides a tool to embed morality in AI sys-
tems; moral uncertainty can be operationalized by re-conceptualizing the metanor-
mative framework of normative uncertainty through latent class choice models; and 
also the empirical illustration of the concept of moral uncertainty. We acknowledge 
that our re-conceptualization fails to take into account the richness and subtleties of 
the work developed originally by MacAskill (2014, 2016) yet opening an avenue for 
further research that accommodates its various extensions. Additionally, instead of 
using a linear utility function, as it was the case in this research, other utility func-
tions such as Random Regret Minimization (Chorus 2010), taboo trade off aversion, 
or lexicographic choice may be explored, as these indirectly refer to different moral 
theories. Finally, through the proof of concept this research also opens avenues for 
further research on the meaning and practical implications of moral uncertainty in 
artificial decision-making.
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09556 -9) contains supplementary material, which is available to authorized users.
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