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Abstract. Depending on whether bidirectional links or unidirectional links are used for communications, the network topology under
a given range assignment is either an undirected graph referred to as the bidirectional topology, or a directed graph referred to as the
unidirectional topology. The Min-Power Bidirectional (resp., Unidirectional) k-Node Connectivity problem seeks a range assignment
of minimum total power subject to the constraint that the produced bidirectional (resp. unidirectional) topology is k-vertex connected.
Similarly, the Min-Power Bidirectional (resp., Unidirectional) k-Edge Connectivity problem seeks a range assignment of minimum total
power subject to the constraint the produced bidirectional (resp., unidirectional) topology is k-edge connected.

The Min-Power Bidirectional Biconnectivity problem and the Min-Power Bidirectional Edge-Biconnectivity problem have been studied
by Lloyd et al. [23]. They show that range assignment based the approximation algorithm of Khuller and Raghavachari [18], which we
refer to as Algorithm KR, has an approximation ratio of at most 2(2 – 2/n)(2 + 1/n) for Min-Power Bidirectional Biconnectivity, and range
assignment based on the approximation algorithm of Khuller and Vishkin [19], which we refer to as Algorithm KV, has an approximation
ratio of at most 8(1 – 1/n) for Min-Power Bidirectional Edge-Biconnectivity.

In this paper, we first establish the NP-hardness of Min-Power Bidirectional (Edge-) Biconnectivity. Then we show that Algorithm KR
has an approximation ratio of at most 4 for both Min-Power Bidirectional Biconnectivity and Min-Power Unidirectional Biconnectivity,
and Algorithm KV has an approximation ratio of at most 2k for both Min-Power Bidirectional k-Edge Connectivity and Min-Power
Unidirectional k-Edge Connectivity. We also propose a new simple constant-approximation algorithm for both Min-Power Bidirectional
Biconnectivity and Min-Power Unidirectional Biconnectivity. This new algorithm applies only to Euclidean instances, but is best suited
for distributed implementation.
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1. Introduction

Recently, range assignment problems for wireless ad hoc net-
works have been studied extensively. In wireless ad hoc net-
works no wired backbone infrastructure is installed and com-
munication sessions are achieved either through a single-hop
transmission if the communication parties are close enough,
or through relaying by intermediate nodes otherwise. Omni-
directional antennas are used by all nodes to transmit and re-
ceive signals. Such antennas are attractive due to their broad-
cast nature. A single transmission by a node can be received
by all nodes within its vicinity. We assume that every node
can dynamically adjust its transmitting power based on the
distance to the receiving node and the background noise. In
the most common power-attenuation model [24], the signal
power falls as 1

dk where d is the distance from the transmitter
antenna and k is a real constant between 2 and 5 dependent on
the wireless environment. We assume that all receivers have
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the same threshold for signal detection, and normalize this
threshold to one. With these assumptions, the power required
to support a link between two nodes separated by a distance
d is dk.

The network topology of a wireless ad hoc network, which
consists of all possible one-hop communication links among
the nodes, is determined by the transmission ranges of the
nodes. Depending on whether unidirectional links or bidi-
rectional links are used for communications, the network
topology is represented by either a directed graph referred
to as the unidirectional topology, or an undirected graph re-
ferred to as the bidirectional topology. In the unidirectional
topology, there is an arc from a node u to another node v if
and only if v is within the transmission range of u. In the
bidirectional topology, there is an edge between two nodes u
and v if and only if they are within the transmission ranges of
each other.

Connectivity is one of the most important properties of
a wireless ad hoc network. By unidirectional k-node (resp.,
k-edge) connectivity we mean that the unidirectional topol-
ogy is (strongly) k-node (resp., k-edge) connected, and by
bidirectional k-node (resp., k-edge) connectivity we mean
that the bidirectional topology is k-node (resp., k-edge) con-
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nected. Recall that a graph or digraph is k-node (resp., k-edge)
connected if there are k internally node-disjoint (resp., k edge-
disjoint) paths from any node to any other node. For k = 1,
edge connectivity and node connectivity are identical, and
thus are simply referred to as connectivity. For k = 2, 2-node
connectivity is simply referred to as biconnectivity, and
2-edge connectivity is simply referred to as edge-
biconnectivity. For a given transmission range, the unidirec-
tional connectivity is always at least the bidirectional connec-
tivity. However, if the transmission ranges are not identical,
the unidirectional connectivity may be higher than the bidi-
rectional connectivity. On the other hand, if all nodes have
the same transmission range, the unidirectional topology and
the bidirectional topology always have the same connectivity.

The requirement on the network connectivity (either unidi-
rectional or unidirectional) imposes a constraint on the trans-
mission ranges of all nodes. A crucial issue is how to find a
range assignment of the smallest total power to meet a speci-
fied connectivity requirement. The Min-Power Bidirectional
(resp., Unidirectional) k-Node Connectivity problem seeks a
range assignment of minimum total power subject to the con-
straint that the produced bidirectional (resp., unidirectional)
topology is k-connected. Similarly, the Min-Power Bidirec-
tional (resp., Unidirectional) k-Edge Connectivity problem
seeks a range assignment of minimum total power subject
to the constraint the produced bidirectional (resp., unidirec-
tional) topology is k-edge connected. Clearly, the smallest
total power for unidirectional k-node (resp., edge) connectiv-
ity is no more than the smallest total power for bidirectional
k-node (resp., edge) connectivity.

The study of the Min-Power Unidirectional Connectivity
problem was started by Chen and Huang [5], who gave a
2-approximation algorithm based on a minimum spanning
tree. Kirousis et al. [20], among other results, rediscover
the 2-approximation algorithm and show the problem is NP-
hard in three dimensions, and Clementi et al. [7] show the
problem is NP-hard in two dimensions. The related broad-
cast problem was studied in [27,29] and [6]. The recent sur-
vey [8] presents the state of the art for these “unidirectional”
problems. The Min-Power Bidirectional Connectivity prob-
lem was proposed in [2] and [4]. Both papers claim that
Min-Power Bidirectional Connectivity is NP-hard, and [4]
presents a (1 + ln 2)-approximation algorithm. In [1], this
approximation ratio is improved to 5/3 + ε, for any ε > 0.

The Min-Power Bidirectional Biconnectivity problem has
been first studied by Ramanathan and Rosales-Hain [25], who
proposed one reasonable heuristic but without a proven ap-
proximation ratio. Lloyd et al. [23] studied both Min-Power
Bidirectional Biconnectivity and Min-Power Bidirectional
Edge-Biconnectivity. Among other results, they show that
the range assignment based on the approximation algorithm
of Khuller and Raghavachari [18], which we refer to as
Algorithm KR, has an approximation ratio of at most 2(2 –
2/n)(2 + 1/n) for Min-Power Bidirectional Biconnectivity,
and the range assignment based on the approximation algo-
rithm of Khuller and Vishkin [19], which we refer to as

Algorithm KV, has an approximation ratio of at most 8(1 –
1/n) for Min-Power Bidirectional Edge-Biconnectivity.

In this paper, we present a reduction that establishes the
NP-hardness of both Min-Power Bidirectional Biconnectivity
and Min-Power Bidirectional Edge-Biconnectivity. The NP-
hardness holds for plane instances, not only for arbitrary
graph weights. We show that the range assignment based on
the Algorithm KR has an approximation ratio of at most 4 for
both Min-Power Bidirectional Biconnectivity and Min-Power
Unidirectional Biconnectivity. Specifically, we prove that the
total power of this range assignment is less than four times
the smallest power for unidirectional biconnectivity. We also
show that the range assignment based on Algorithm KV has
an approximation ratio of at most 2k for both Min-Power
Bidirectional k-Edge Connectivity and Min-Power Unidirec-
tional k-Edge Connectivity. Specifically, we prove that the
total power of this range assignment is less than 2k times
the smallest power for unidirectional k-edge connectivity. As
both algorithms are graph algorithms, the approximation ra-
tios hold also if the nodes are in three dimensional space,
if the possible ranges come from a discrete set of values, if
obstacles completely block the communication in between
certain pairs of nodes, and if there is a maximum value on the
ranges. The previous result of Lloyd et al. [23] also has this
desirable property.

Although the range assignments based Algorithm KR and
Algorithm KV have constant approximation ratios, they have
very complicated implementations and are not practical for
wireless ad hoc networks. This motivates us to seek a trade-
off between the approximation ratio and the implementa-
tion complexity. We propose a very simple range assignment,
called MST-Augmentation, which achieves both bidirectional
and unidirectional biconnectivity. The total power of this
range assignment is less than 8 times the smallest power for
unidirectional connectivity for plane instances with k = 2,
while for k > 2 we prove a 3.2 · 2k-approximation.

In parallel with us (our conference version is one
month later than theirs), Hajiaghayi et al. [17] published
results which overlap or complement ours. They obtain a
O(k)-approximation for Min-Power Bidirectional k Connec-
tivity in graphs. They also propose a MST augmentation
algorithm similar to ours, and include a general version for
k-connectivity for which they prove a O(k2k+2) approxima-
tion ratio for plane instances. For biconnectivity they prove
an approximation ratio of 2(4 · 2k−1 + 1), which is weaker
than ours.

The remainder of this paper is organized as follows. In
Section 2, we present the NP-hardness of Min-Power Bidi-
rectional (Edge-) Biconnectivity. In Section 3, we describe an
alternative problem formulation and some basic properties of
the power costs. In Sections 4 and 5, we derive tighter upper
bounds on the approximation ratios of the range assignments
based Algorithm KR and Algorithm KV respectively. In Sec-
tion 6, we present the new algorithm, MST-Augmentation,
and analyze its approximation ratio. Finally, in Section 7, we
conclude the paper.
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2. NP-hardness

In this section we describe the reduction proving the NP-
hardness of both Min-Power Bidirectional Biconnectivity and
Min-Power Bidirectional Edge-Biconnectivity. NP-hardness
holds for plane instances, not only for arbitrary graph
weights.

Theorem 1. Min-Power Bidirectional Biconnectivity and
Min-Power Bidirectional Edge-Biconnectivity are NP-hard.

Proof: The reduction is from Hamiltonian Circuit in Planar
Cubic Graphs, proved to be NP-Complete in [16]. The in-
tuition comes from the following simple reduction showing
that finding a biconnected spanning subgraph with minimum
number of edges is NP-Hard. The simple reduction is also
from Hamiltonian Circuit in Planar Cubic Graphs, keeps the
graph and lets n be the desired number of edges of the bi-
connected spanning subgraph. If the graph has a Hamiltonian
circuit, then this circuit is a biconnected spanning subgraph
with n edges, and a biconnected spanning subgraph with n
edges must be a Hamiltonian circuit.

Let G = (V, E) be a planar cubic (all vertices having
degree three) graph with n vertices. We construct an instance
U of Min-Power Bidirectional Two-(Edge)-Connectivity as
follows. We first apply the polynomial time algorithm in [3,
23] to obtain a planar orthogonal grid drawing of G in which
each vertex u has integer coordinates, each edge uv has at
most one bend, and each horizontal or vertical line segment
has length between 6 and a polynomial function of n. Note
that the bends also occur only at integer coordinates, since
an edge connects vertices with integer coordinates and has at
most one bend. Scale the construction up by n, so that a point
x on the embedding of edge uv with ‖xu‖ > n and ‖xw‖ > n
is at distance at least n to any point on some embedded edge
other than uv.

Let L be the total length of the edges. Then L is bounded by
a polynomial in n. Next, subdivide every edge of length l into
lL2 equidistant points but remove in the middle of the edge, in
a place not containing a bend, L2 of these new points, leaving
a gap of length 1. For an illustration of the result, please refer
to figure 1.

Place a node in each of the points mentioned above, except
the removed ones. Finally, for every already placed node in
the plane, place arbitrarily at distance 1/L2 to it another new
node; two such nodes are called twins. The total number of
nodes introduced is O(L3), and therefore the construction is
polynomial.

If we consider the graph induced only by nodes at most
3/L2 apart, it has n components, each corresponding to a ver-
tex of the original graph G. We call such a component the
cluster of the original vertex v. Moreover, each component
is two connected, as we prove below. The nodes obtained
from the subdivision are at distance 1/L2 apart and form a
connected graph. Each node added as a twin is adjacent to
its twin. Removing a newly added twin cannot destroy con-

Figure 1. A portion of a planar cubic graph containing the circuit v1, v2,
v3, v4. The circles denote the points obtained by subdivision, with the re-
moved points being empty circles. The picture suggests that many points are
removed—in fact on an edge at most a fraction of 1

6n
is removed, and the

“gaps” are very small.

nectivity, since it is preserved by the nodes obtained from the
subdivision. Removing a node obtained from the subdivision
also does not break a cluster into connected components since
the twin of the removed node is adjacent to the nodes “close”
(at distance 1/L2) of the node removed. For an illustration of
one cluster (including the twins) (see figure 2).

Let n′ denote the number of nodes in the resulting instance.
Recall that the power of a node is at least the square of its
assigned range. If the original graph is Hamiltonian, we obtain
a range assignment of total power not exceeding 2n + 9n′/L4

Figure 2. The cluster of v, with a gap of length 1 to another cluster.
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by assigning to every node a range of 3/L2 and, for every edge
uv of the Hamiltonian path, we pick the two nodes next to
the uv-gap, one in the cluster of u and one in the cluster of
v, and assign them range 1. Note that n′ ≤ 2L3 and therefore
2n + 9n′/L4 < 2n + 1 (where we use L ≥ n > 18; if n ≤ 18
there is no need for a reduction as we could solve Hamiltonian
Circuit in Planar Cubic Graphs). We proved that if the original
graph is Hamiltonian, we obtain in the constructed graph
a range assignment ensuring biconnectivity of total power
strictly less than 2n + 1.

Next we show that any range assignment ensuring edge
biconnectivity of total power less than 2n + 1 implies that the
original graph G is Hamiltonian. Let H′ be the two-(edge-)
connected graph established by the range assignment, and
H be the multigraph obtained from H′ by contracting every
cluster to a single vertex. Every cluster must be incident to at
least two edges of H. Recall that a point x on the embedding
of edge uv with ‖xu‖ > n and ‖xv‖ > n is at distance at least n
to any point on some embedded edge other than uv. Thus for a
node x in a cluster to have edges of H′ incident to nodes in two
other clusters, it must have a range of at least n, contributing
at least n2 to the total power. So we may assume that any node
is, in H′, incident only with nodes in its own cluster, or only
one extra cluster. A range of at least 1 is needed to establish
links to another cluster.

For U ⊆ V, let P(U) be the minimum total power required
to establish the edges of H′ with both endpoints in the clusters
of H[U], the subgraph of H induced by U. We claim that if
U ⊆ V, |U| ≥ 3, and H[U] is edge-biconnected, then P(U)
≥ 2|U|. Indeed, if every cluster corresponding to U has two
vertices with range 1, then the claim holds. If the cluster
corresponding to a vertex v ∈ U has only one node x with
range at least 1, then v is adjacent in H[U] to only one other
vertex, which we call u, by at least two parallel edges. Then,
in the cluster of u, two nodes must have range at least 1
and be adjacent to x in H′. Also, H[U − v] must be two-
edge connected. If |U − v| = 2, the same reasoning as above
implies that P(U − v) ≥ 3 and therefore P(U )≥ 6: the two
nodes of the cluster of u and the one node in the cluster of v
each contribute another 1 to the power of U. If |U| ≥ 4, the
claim follows by induction, as in this case P(U − v) ≥ 2(|U|
− 1).

The previous claim and its proof imply that if H[U] is two-
edge connected, |U| ≥ 4, and P(U) < 2|U| + 1, then every
cluster corresponding to U has exactly two nodes with range
at least 1, establishing links to two other clusters. For U =
V, this implies that H[V] is Hamiltonian, and therefore G is
Hamiltonian. Thus, the theorem follows. �

3. Problem reformulation

A wireless ad hoc network can be represented by a weighted
complete graph G = (V, E, c) with c(e) = ||e||k where ||e||
is the length of the edge e. For any spanning subgraph H of
G, define pH(v) = maxuv∈E(H)c(uv) for each v ∈ V and p(H)

= ∑
v∈V pH(v); we call p(H) the power of H (note that we re-

define the notion of “power of a graph” and we never use the
classical graph-theoretic definition in this paper). Since as-
signing p(v) ≥ pH(v) is necessary to produce the subgraph H
and p(v) > pH(v) just wastes power, the Min-Power Bidirec-
tional k-Node (resp., k-Edge) Connectivity problem is equiv-
alent to finding a k-vertex (resp., k-edge) connected spanning
subgraph H of G with minimum p(H).

For any subgraph H of G, we use �H to represent the
weighted graph obtained from H by replacing every edge uv
of H with two oppositely oriented arcs uv and vu with the same
weight as the edge uv in H. For any spanning subdigraph D of
�G, we define pD(u) = maxuv∈E(D)c(uv) for each u ∈ V and p(D)
= ∑

u∈VpD(v); we callp(D) the power of D. Similarly, the
Min-Power Unidirectional k-Node (resp., k-edge) Connec-
tivity problem is equivalent to finding a (strongly) k-vertex
(resp., k-edge) spanning subgraph D of �G with minimum
p(D).

Next, we discuss some basic properties of powers of graphs
and digraphs. As usual, the weight of a subgraph H of G is
defined as c(H) = ∑

e∈E(H)c(e), and the weight of a subdi-
graph D of �G is defined as c(D) = ∑

e∈E(D)c(e). Clearly, for
any subgraph H of G, p( �H ) = p(H) and c( �H ) = 2c(H).

Lemma 2. For any subdigraph D of �G, p(D) ≤ c(D). For
any subgraph H of G, p(H) ≤ 2c(H).

Proof: Since

p (D) =
∑

u∈V

pD (u) =
∑

u∈V

max
uv∈E(D)

c (uv)

≤
∑

u∈V

∑

uv∈E(D)

c (uv) =
∑

e∈E(D)

c (e) = c (D) ,

the first inequality holds. Since

p(H ) = p( �H ) ≤ c( �H ) = 2c(H ),

the second inequality holds. �

A spanning subdigraph D of �G is said to be a branching
rooted at some vertex s ∈ V if D contains exactly |V|− 1 arcs
and there is a path in D to s from any other vertex. In other
words, branchings in directed graphs are directed analogs of
spanning trees in undirected graphs. It is easy to verify that
if D is a branching, then p(D) = c(D).

For any subdigraph D of �G, we use D̄ to represent the
undirected graph obtained from D by ignoring the orientations
of the arcs and then removing multiple edges between any
pair of nodes. Then,

c (D) ≥ c
(
D̄

)
, p (D) ≤ p

(
D̄

)

4. Algorithm KR for k-edge connectivity

A digraph is said to be k-edge inconnected to a vertex s if it
contains k arc-disjoint paths to s from any other vertex. The
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min-weight spanning subdigraph of a given weighted digraph
which is k-edge-inconnected to a specified vertex, if there is
any, can be found in polynomial time by the weighted matroid
intersection algorithm due to Lawler [21] and Edmonds [11].
The fastest implementation of a weighted matroid intersection
algorithm is given by Gabow [13]. If a digraph D is k-edge-
inconnected, then D̄ is k-edge connected [18]. Algorithm
KR [18] constructs a k-edge-connected spanning subgraph
of a given weighted graph G as follows. For some node s,
find the minimum-weight subdigraph D of Ḡ which is k-edge
inconnected to s, and then output the graph D̄.

Let opt be the power cost of an optimum range assign-
ment for unidirectional k-edge connectivity. Lloyd et al. [23]
proved that for k = 2, p(D̄) ≤ 8(1 − 1/n) · opt , where n is
the number of nodes. We prove the following stronger bound,
which also applies to larger values of k.

Theorem 3. p(D̄) < 2k · opt

Proof: Let D∗ be the digraph produced by the optimum
range assignment for unidirectional k-edge connectivity.
Then D∗ is strongly k-edge connected. By a theorem due
to Edmonds [10], D∗ contains k arc-disjoint branchings B1,
B2, . . . , Bk rooted at s. As ∪k

i=1Bi is k-edge inconnected
to s,

c(D) ≤ c

(
k⋃

i=1

Bi

)

=
k∑

i=1

c (Bi)

=
k∑

i=1

p (Bi) < kp(D∗) = k · opt.

Using Lemma 2, we conclude:

p(D̄) ≤ 2c(D̄) ≤ 2c(D) < 2k · opt.

Theorem 3 implies that the approximation ratio of Algo-
rithm KR is at most 2k. �

5. Algorithm KV for biconnectivity

A digraph is said to be k-vertex inconnected to a vertex s
if it contains k internally vertex-disjoint paths to s from any
other vertex. The min-weight spanning subdigraph of a given
weighted digraph which is k-vertex inconnected to a speci-
fied vertex, if there is any, can be found in polynomial time
by an algorithm of Frank and Tardos [12]. Gabow [14] has
given a faster implementation of the Frank-Tardos algorithm.
Suppose that D is a 2-vertex inconnected digraph to a vertex
s in which s has exactly two incoming neighbors x and y.
Then the graph

(
D̄ − s

) ∪ {xy} is biconnected [19]. Algo-
rithm KV [19] constructs a biconnected spanning subgraph of
a given weighted graph G as follows.

1. Let xy be the edge of G of minimum weight and s be a
vertex not in V. Add two edges xs and ys of weight 0 to G.
The resulting graph is denoted by G+.

2. Find the minimum-weighted spanning subgraph D of �G+

which is 2-vertex-inconnected to s.

3. Output the graph
(
D̄ − s

) ∪ {xy}.
The result of this section (Theorem 6 below) makes use of

the following two previously-known graph-theoretic results.
The first is a corollary of Menger’s Theorem:

Theorem 4 (Fan Lemma) (see, for example, [9]). Suppose
that D is a k-vertex connected directed graph and U is a
proper subset of its vertices with |U| = k. Then for any vertex
v not in U, there are k internally vertex-disjoint paths that
link v to distinct vertices of U.

Theorem 5 (Whitty) [28]. Suppose that, given a directed
graph D = (V, A) and a specified vertex s ∈ V, there are two
internally vertex-disjoint paths to s from any other vertex of
D. Then D has two arc-disjoint branchings rooted at s such
that for any vertex v ∈ V − s the two paths to s from v uniquely
determined by the branchings are internally vertex-disjoint.

Let opt be the power cost of an optimum range assignment
for unidirectional biconnectivity. Lloyd et al. [23] proved that
p((D̄ − s) ∪ {xy}) ≤ 2(2 − 2/n)(2 + 1/n) · opt . The next
theorem gives a tighter bound.

Theorem 6. p((D̄ − s) ∪ {xy}) ≤ 4 · opt.

Proof: Let D∗ be the digraph produced by the optimum
range assignment for unidirectional biconnectivity. Then by
the Fan lemma (Theorem 4), D∗ ∪ {xs, ys} is 2-vertex in-
connected to s. By Theorem 5, D∗ ∪ {xs, ys} contains two
arc-disjoint branchings B1 and B2 rooted at s such that, for
every vertex v ∈ V, the two paths in B1 and B2 from v to s are
internally vertex-disjoint. So B1 ∪ B2 is 2-vertex inconnected
to s. Hence,

c(D) ≤ c (B1 ∪ B2) = c (B1) + c (B2) = p (B1) + p (B2)

< 2p(D∗ ∪ {xs, ys}) = 2p(D∗) = 2 · opt.

By Lemma 2 and the selection of the edge xy,

p((D̄ − s) ∪ {xy}) = p(D̄ − s) ≤ 2c(D̄ − s)

= 2c(D̄) ≤ 2c(D) < 4 · opt. �

Theorem 6 implies that the approximation ratio of Algo-
rithm KR is at most 4.

6. Algorithm MST-augmentation for biconnectivity

In this section, we present a simple algorithm which produces
a biconnected spanning graph H by augmenting an MST. The
algorithm first finds a Euclidean MST T and initializes H to
T. At any non-leaf node v of T, a local Euclidean MST Tv

over all the neighbors of V in T is constructed and added to
H. Thus H is a union of a big MST T and many small MSTs.
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Hajiaghayi et al. [17] devised a similar MST augmentation
algorithm, but they use paths instead of trees to connect the
neighbors of V in the minimum spanning tree T.

H is 2-connected, as it follows from the following argu-
ment. Only internal nodes of T can be articulation points of H;
let u be such a node. Removing u from T creates a number of
connected components of T, each having one vertex neighbor
with u in T. But the neighbors of u in T remain connected by
Tu, the local MST which does not include u.

We refer to this algorithm as MST-Augmentation. Besides
being simple and very fast (as every vertex has constant de-
gree in T, the total running time is dominated by constructing
T and is O(n) log n), this algorithm is best suited to efficient
distributed implementation. Indeed, after the computation of
the minimum spanning tree, each node can compute its power
with a constant number of messages to other nodes (since T
has degree bounded by six, see the next paragraph). The min-
imum spanning tree can be computed by the algorithm of
Gallager et al. [15] in 5n log n+2m messages and O(n) time,
where m is the number of valid communication links. Another
advantage of this algorithm is the independence of the path-
loss exponent k, since only the Euclidean distances between
the nodes are used (only the approximation ratio depends on
k, not the algorithm itself).

To bound the approximation ratio of MST-Augmentation,
we introduce a geometric constant α defined below. Let o
be the origin of the Euclidean plane. A set U of at least two
points is called a star-set if its Euclidean MST for {o} ∪ U is
a star centered at o. The star is denoted by SU . Note that each
star-set contains at least two but at most six points, as the
maximum degree of the Euclidean minimum spanning tree
is six. Indeed, if uw and uv are two edges of the Euclidean
minimum spanning tree, the angle in between these edges
cannot be smaller than �/3 since otherwise the triangle uvw
has a bigger angle, and therefore at least one of uw and uv is
longer than vw and can be replaced by vw in the tree. Seven
edges incident to a vertex imply an angle of less than �/3.
Also, we use below the fact that having six edges incident to a
vertex in the Euclidean minimum spanning tree implies that
the six angles in between consecutive (in clockwise order)
edges are equal and, by the replacement argument above,
all the six edges are equal. For any star-set U, let TU be
the minimum spanning tree of U. Then α is defined as the
supreme of the ratio c(TU)/c(SU) over all star-sets.

Lemma 7. For any k ≥ 2, 2k−1 ≤ α ≤ 1.6 ·2k−1. If k = 2,
then α=2.

Proof: The lower bound 2k−1 is achieved by U consisting
of two points u1 and u2 such that o is the midpoint of the line
segment u1u2. Next, we prove the upper bound 1.6 · 2k−1.
Consider any star-set U. If U has exactly six points, then
these points form a regular hexagon centered at o, and hence

c (TU ) = 5

6
c (SU ) < 1.6 · 2κ−1c (SU ) .

So we assume U has m ≤ 5 points. For any two points u
and w in U,

c (uw) = ‖uw‖k ≤ (‖ou‖ + ‖ow‖)k

= 2k

(‖ou‖ + ‖ow‖
2

)k

≤ 2k ‖ou‖k + ‖ow‖k

2

= 2k−1 (c (ou) + c (ow)) .

Thus, the total weight of the convex polygon formed by
the points of U is at most 2kc(SU). On the other hand, as
removing the largest edge of the polygon creates a tree on U,
c(TU) is at most (1− 1

m
) times the total weight of this polygon.

Thus,

c (TU ) ≤
(

1 − 1

m

)

· 2kc (SU )

≤
(

1 − 1

5

)

· 2kc (SU )

= 1.6 · 2k−1c (SU ) .

The lemma thereby follows.
Now we assume k = 2 and show that α = 2. Since α ≥ 2,

we only have to show that α ≤ 2. Consider a star-set (each
point given by its coordinates):

U = {(ai, bi) : 1 ≤ i ≤ m} .

Let KU denote the complete graph over U. We first claim
that

c (SU ) ≥ 1

m
c (KU ) .

To see this, we make use of the following inequality:

m∑

i=1

a2
i =

(∑m
i=1 ai

)2 + ∑
1≤i<j≤m(ai − aj )2

m

≥
∑

1≤i<j≤m(ai − aj )2

m
.

Thus,

c (SU ) =
m∑

i=1

(
a2

i + b2
i

)

≥
∑

1≤i<j≤m[(ai − aj )2 + (bi − bj )2]

m

= 1

m
c (KU ) .

Next, we claim that

c (TU ) ≤ 2

m
c (KU ) .

This claim can be proved by a simple counting argument.
Note that a complete graph of order m has mm−2 spanning
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trees, and each edge appears in

mm−2 (m − 1)
m(m−1)

2

= 2mm−3

spanning trees (see, for example, Chap. 2 of [26]). The total
weight of all spanning trees of KU is thus 2mm−3c(KU). Hence,

c (TU ) ≤ 2mm−3c (KU )

mm−2
= 2

m
c (KU ) .

From the two previous claims, we have

c (TU )

c (SU )
≤

2
m

c (KU )
1
m

c (KU )
= 2.

So the lemma follows for k = 2. �

Now we are ready to present the upper bound on p(H)
in terms of α and the power cost of an optimum range as-
signment for unidirectional connectivity which is denoted by
opt.

Theorem 8. p(H) < 4 α · opt.

The proof of this theorem consists of the following sev-
eral lemmas. The first of these lemmas is implicit in [20]
and it follows immediately from the fact that T is a mini-
mum spanning tree and one argument used in the proof of
Theorem 3.

Lemma 9. c(T) < opt.

Let E1 be the set of all edges of T incident to leaves. Let
E2 be the set of all edges of the trees Tv for all non-leaf nodes
v. Let H′ be the graph (V, E1 ∪ E2). Then H′ is a subgraph
of H, and thus p(H) ≥ p(H′). The next lemma states that the
equality actually holds.

Lemma 10. For every node v, pH(v) = pH
′(v), and conse-

quently p(H) = p(H′).

Proof: We prove the lemma by contradiction. Assume that
pH(v) > pH

′(v) for some node v. Let pH(v) = c( uv). Then uv
must be an edge of T and neither of u and v is a leaf. Since u
is not a leaf, u has a neighbor w in T other than v such that vw
is an edge in Tu. So vw is an edge of E2. Since both uv and
uw are edges of MST T, |uv| ≤ |vw|, and thus c(uv) ≤ c(vw).
Therefore,

pH (v) = c (uv) ≤ c (vw) ≤ pH ′ (v) ,

which is a contradiction. �

The next lemma provides an upper bound on the total
weight of H′.

Lemma 11. c(H ′)≤ 2α · c(T).

Proof: From Lemma 7, we have

c(Tu) ≤ α
∑

uv∈E(T )

c(uv).

Then
c(H ′) = c(E1) + c(E2)

=
∑

u leaf

∑

vu∈E(T )

c(uv) +
∑

u internal

c(Tu)

≤ α
∑

u leaf

∑

vu∈E(T )

c(uv) + α
∑

u internal

∑

vu∈E(T )

c(uv)

= 2αc(T ),

as every edge of T appears exactly twice in the summation.
�

Now Theorem 8 follows immediately from Lemmas 2, 9,
10, and 11:

p(H ) = p(H ′) ≤ 2c(H ′) < 4α · c (T ) < 4α · opt.

Theorem 8 and Lemma 7 imply that the approximation
ratio of MST-Augmentation is at most 8 for k = 2 and at most
3.2 ·2k for general k.

7. Summary

We presented improved analyses of existing algorithms
for Min-Power Bidirectional Biconnectivity and Min-Power
Bidirectional k-Edge Connectivity, and showed the bidirec-
tional output of these algorithms is also a good approximation
for Min-Power Unidirectional Biconnectivity and Min-Power
Unidirectional k-Edge Connectivity, respectively. We showed
that Min-Power Bidirectional Biconnectivity and Min-Power
Bidirectional Edge-Biconnectivity are NP-hard. We intro-
duced the new algorithm MST-Augmentation and showed it
also has constant approximation ratio.
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