Mobile Netw Appl (2008) 13:424-430
DOI 10.1007/511036-008-0078-9

& OpenAccess

Cognitive Radio Design on an MPSoC

Reconfigurable Platform

Qiwei Zhang - André B. J. Kokkeler -
Gerard J. M. Smit

Published online: 13 July 2008
© The Author(s) 2008

Abstract Cognitive Radio has been proposed as a
promising technology for solving today’s spectrum
scarcity problem by means of dynamic spectrum access.
The multiprocessor system-on-chip (MPSoC) reconfig-
urable platform is proposed as an enabling technol-
ogy for cognitive radio. In this paper, we propose a
design methodology based on task transaction level
interface for the design of cognitive radio baseband on
an MPSoC reconfigurable platform. The reconfigura-
tion of a novel, low-complexity fast Fourier transform
for orthogonal frequency-division multiplexing based
Cognitive Radio is used as a design case to show the
effectiveness of the methodology for modelling the
dynamic behavior of Cognitive Radio and facilitating
the platform implementation.

Keywords cognitive radio - MPSoC - OFDM .
design method - task transaction level interface -
sparse FFT

1 Introduction

Recent studies have shown that most of the assigned
radio spectrum is underutilized. On the other hand,
the increasing number of wireless multimedia applica-
tions leads to increasing spectrum scarcity. Cognitive

Q. Zhang (X) - A. B. J. Kokkeler - G. J. M. Smit
Department of Electrical Engineering, Mathematics
and Computer Science, University of Twente,
Enschede, The Netherlands

e-mail: q.zhang@utwente.nl

@ Springer

Radio [1, 2] is proposed as a promising technology to
address the paradox of spectrum scarcity and spectrum
under-utilization. In Cognitive Radio, spectrum sensing
locates the unused spectrum segments in a targeted
spectrum pool. These segments will be used optimally
without harmful interference to licensed users. This
technology is called spectrum pooling [3]. In spec-
trum pooling, orthogonal frequency-division multiplex-
ing (OFDM) is proposed as the baseband transmission
scheme. Those subcarries which cause interference to
licensed users should be nullified. Therefore, OFDM
based Cognitive Radio has to be reconfigurable to be
adaptive to the changing wireless channels. This re-
configurability has to be supported by a reconfigurable
platform. Our research undertaken in the Adaptive
Ad-hoc Freeband (AAF) project (www.freeband.nl)
focuses on mapping the baseband algorithms of
Cognitive Radio onto a reconfigurable platform.

2 Multiprocessor system-on-chip for cognitive radio

Cognitive Radio is seen as an evolution from the
software-defined radio platform [1]. However, the tra-
ditional software-defined radio platform for digital
processing is mainly based on General Purpose Proces-
sors and Digital Signal Processors which are inadequate
for future high data rate wireless communications in
terms of processing speed and energy efficiency. With
the advance of the semiconductor technology, the fu-
ture trend of wireless baseband processors is mov-
ing toward Multiprocessor System-on-Chips (MPSoCs)
which integrate heterogeneous processing elements tai-
lored for different processing tasks. MPSoCs offer high
performance, reconfigurability and energy efficiency.

http://www.freeband.nl

Mobile Netw Appl (2008) 13:424-430

425

GPP DSRH DSRH ASIC FPGA

DSRH DSP FPGA DSRH DSP

R A—R—A——~

DSP ASIC GPP ASIC GPP

R —R —A—~

GPP DSRH ASIC DSP DSRH

Figure 1 Heterogeneous multiprocessor tiled SoC

Therefore, we proposed a tiled MPSoC (see Fig. 1)
architecture to support Cognitive Radio [4]. These tiles
can be various processing elements including General
Purpose Processors, Field Programmable Gate Arrays,
Application Specific Integrated Circuits and Domain
Specific Reconfigurable Hardware (DSRH) modules
which target the specific algorithm domains. The Mon-
tium [5] tile processor developed at the University
of Twente is an example of a DSRH. It targets the
digital signal processing algorithm domain and has
the flexibility to adapt to different algorithms in an
energy-efficient manner. Therefore, the Montium tiled
processor is the key element in our proposed reconfig-
urable platform for Cognitive Radio. The tiles in the
SoC are interconnected by a Network-on-Chip (NoC).
Both the SoC and NoC are dynamically reconfigurable,
which means that the programs (running on the re-
configurable processing elements) as well as the com-
munication links between the processing elements are
configured at run-time.

3 TTL design methodology

MPSoCs offer many advantages as described in the
previous section. However, it is a challenging task to
map applications onto MPSoCs. First, the applications
to be mapped on the MPSoC become more complex:
they consist of more and more tasks and some of the
tasks may change their behavior dynamically. Second,
in order to map tasks to different components on an
MPSoC, designers have to deal with the low-level in-
terfaces for the inter-component communication and
synchronization which become a bottleneck from a
performance and an energy point of view. Further,
opportunities for the reuse of hardware and software

modules are limited and no method exists for explor-
ing their trade-offs. Therefore, there is a gap between
the application models used for specification and the
optimized implementation of the application on an
MPSoC. A task transaction level (TTL) interface ap-
proach [6] was proposed to help to close the gap by
raising the abstraction level. We propose to use the
TTL approach both for developing the Cognitive Radio
application at the system level and as a platform inter-
face for implementing the application onto the MPSoC
architecture.

In the TTL approach, an application is modelled as a
task graph. A task is an entity that performs compu-
tations. One task may communicate with other tasks
via channels. Communications are invoked by calling
TTL interface functions. Computation components can
be plugged-in and replaced as functions, which allows
exploring and validating design alternatives at a high
level of abstraction. The TTL model of the application
can be implemented on the targeted platform providing
that the TTL shells are available for each processor. A
design example on an OFDM receiver for HiperLAN/2
was given in [7]. The TTL approach is extended for
modelling reconfigurable applications such as adaptive
baseband processing in Cognitive Radio.

4 Design case: a low complexity fast Fourier
transform for OFDM based cognitive radio

In this paper, we present a design case of a recon-
figurable low complexity fast Fourier transform (FFT)
algorithm for OFDM based Cognitive Radio to demon-
strate the TTL approach. The reasons to choose this
design case are: 1) The FFT is an essential and the
most computational intensive task in OFDM baseband
processing; 2) the algorithm is novel in the context of
Cognitive Radio; 3) the algorithm is reconfigurable. We
organize this section as follows. First, OFDM based
Cognitive Radio is introduced. Then our proposed low-
complexity FFT is explained and followed by the TTL
implementation. Finally the results will be analyzed.

4.1 OFDM based cognitive radio

Theoretically, an OFDM-based Cognitive Radio sys-
tem can optimally approach the Shannon capacity in
the segmented spectrum by adaptive resource alloca-
tion on each subcarrier, which includes adaptive bit
loading and adaptive power loading. In [4], we pro-
posed an OFDM system with adaptive bit loading and
power loading for Cognitive Radio. We could maximize

@ Springer

426

Mobile Netw Appl (2008) 13:424-430

the data rate of the system under a certain power
constraint. It is formulated as follows:

K
F h?

Max R = E fklogz (1 +]\;;Pk)
0

B
k=1 K
K
Subject to:Z Pk = Piow
k=1
F, € {0, 1} for all k
pr = 0 for all kK which satisfies F;, =0 (1)

where R is the data rate; K is the number of the
subcarriers; Ny is the noise power density, B is the band
of interest for Cognitive Radio, Ay is the subcarrier
gain and py is the power allocated to the corresponding
subcarrier. Fy is the factor indicating the availability of
subcarrier k to Cognitive Radio, where F; = 1 means
the kth carrier can be used by Cognitive Radio. The
system power minimization can also be applied under
the constraint of a constant data rate. We formulate it
as follows:

K

Min Zpk = Piow
k=1

Subject to: R ZK:F"1 (1+h’2‘pk>
ubjectto: R =) — log, Z
o K Nog

F; €{0,1} forall k
pir = 0 for all k which satisfies Fy, =0 2)

A functional diagram of the system is presented in
Fig. 2. A bit allocation vector indicates how many bits
are loaded on each subcarrier. The number of bits
corresponds to the different modulation types used for
each subcarrier. The bit allocation vector is determined
by the spectrum occupancy information from spectrum

bit allocation vector
(I O IO S — -{4]0]

signaling
channel

) oo Y iFF T ©F —- =") T) O)

data
channel

X RX

Figure 2 OFDM for cognitive radio

@ Springer

sensing and the SNR of subchannels. The bit allocation
vector is disseminated via a signaling channel, so that
both transmitter and receiver have the same informa-
tion. We assume the bit allocation vector does not
change frequently for instance during several frames.
The basic idea is to load more bits on good subcarriers
and load zeros onto carriers which cause interference
to the licensed user or lead to poor transmissions. The
expectation is that there could be a large number of
zero inputs/outputs for the IFFT/FFT when a large part
of the spectrum is not available to Cognitive Radio or
there are many bad channels. Therefore the normal
radix-2 IFFT/FFT will be inefficient in this case due to
the wasted operations on zeros.

4.2 Sparse FFT

In mathematical terms, arrays or matrices where most
of the elements have the same value (called the de-
fault value,usually 0) and only a few elements have a
non-default value are sparse. It is beneficial and often
necessary to take advantage of the sparse structure
algorithmically to reduce the operations of the standard
algorithms. Therefore, we propose a low complexity
FFT algorithm as an option for OFDM based Cognitive
Radio in [8]. We term this FFT algorithm sparse FFT.
The algorithm is based on transform decomposition
in [9], but has been tailored for our Cognitive Radio
system. Transform decomposition can be seen as a
modified Cooley-Tukey FFT where the DFT is decom-
posed into two smaller DFTs. The detailed mathemat-
ical derivation of the algorithm can be found in [9];
here we only show the computational structure in Fig. 3.
We made some modifications to the original algorithm

x(0) %,(0) X,(0) X(0)
x,(k) X, (k)

x(1) |
x(i2) \ . (I\I/l—l)

XWN-D

P0) X,0) Wi

X (k) X, (k) . X (k)

XN-D XD

X(L-1)
Xy, (0) Xy, 0)
EN0) X, (k)
AN-1) Xy (N-D Xy (N-D

_—

Input mapping Only L outputs

Multiplication and computed

recombination

—
~. length N, FFTs

Figure 3 Computational structure of transform decomposition

Mobile Netw Appl (2008) 13:424-430

427

to facilitate efficient hardware implementations. We
choose the total number of carrier N as a power-of-
two integer and L is the number of non-zero outputs.
Nj is chosen as a nearest power-of-two integer larger
than L. This choice of N; helps to exploit more regu-
larities. Thus N, is also a power-of-two integer which
satisfies N = Ny N,. The algorithm is decomposed into
two major parts: the N, blocks of N;-point DFTs which
can be implemented as radix-2 FFTs and the multiplica-
tions with twiddle factors and the recombination of the
multiplications. The reduction of computation comes
from the second part where only L twiddle factors are
multiplied with each X, ((k),) (denoting modulo N;)
for n, = 1,2, ..., N;. According to the computational
structure, we perform quantitative analysis on the com-
putational complexity by counting the number of com-
plex multiplications. So the number of multiplication
for sparse FFT is (N, — 1) % L + % log, N;, which is
less than the number of multiplications for radix-2 FFT
(% log, N) when L < N/2.

Therefore, we propose that the system will be recon-
figured to a sparse FFT when there are a large number
of zeros in the bit allocation vector.

4.3 The TTL implementation

We implemented the reconfigurable sparse FFT in
the TTL environment to achieve the following goals:
1) to verify the sparse FFT at system level; 2) to obtain
high level profile information in terms of computation
workload and communication workload which help to
make the implementation trade-offs on processors.
During the first step, we create the task graph (see
Fig. 4) of the reconfigurable sparse FFT. The source
task generates the input samples which are sent via
the data channel to the FFT task. The destination task
consumes the output samples from the FFT task. A
configuration manager decides the type of FFT algo-
rithm, depending on the number of non-zero values

Bit allocation
vector

Configuration Manager

Configuration Channel

Configuration

Data Channel input port

Radix-2 FFT X .
Source or Destination
Task Sparse FFT Task
Data FFT Task Data

input port output port

Figure 4 Task graph of reconfigurable sparse FFT

L in the bit allocation vector. If L < N/2, the config-
uration manager will generate the configuration data
for a sparse FFT. Then it indicates the FFT task to
perform sparse FFT and sends all the configuration
data to the FFT task via the configuration channel. The
configuration manager will go to standby until a new bit
allocation vector arrives. Depending on L, the FFT task
either performs radix-2 FFT or the sparse FFT.

The TTL functions are called from the TTL C/C++
library to create tasks, define communication inter-
faces and generate the task graph. At the system level,
the tasks are coded in C/C++. But in the platform
implementation, the tasks can be implementations on
a particular processor. Here we give a pseudo code
example of the TTL implementation to show how the
reconfiguration is done for the FFT task.

Task Task FFT
{initialization;
while (true)
{local variables;
\\check the configuration updates
tryAcquiredata (Task FFT->config inport)
{\\update L
ttl read(Task FFT->config_ inport, L);
\\read in configuration
ttl read(Task FFT->config_ inport,
SFFT CONFIG DATA) ;
}
\\read in data
for (i=0; i<num samples; i++)
ttl read(Task FFT->data inport,
proc_buffer[i]);
\\sparse FFT or radix-2 FFT
if (L<num samples/2)
{\\sparse FFT processing
call sparse_ FFT;
}
else
{\\radix-2 FFT
call rad2 FFT;
}
\\write out results
for(i=0; i<num samples; i++)
ttl write(Task FFT->data_ outport,
proc_buffer[i]) ;
}

}

The FFT task checks the updates from the configura-
tion channel. If a new configuration is generated by
the configuration manager, the FFT task will read in
the configuration data from the configuration channel
via the configuration input port. Then the FFT task

@ Springer

428

Mobile Netw Appl (2008) 13:424-430

Table 1 OFDM parameters:
sample frequency and symbol
duration

B=f N Af T,
[MHz] [kHz] [ps]

512 512 10 100

reads in samples from the source task. After reading the
samples and the configuration data, the sparse FFT or
radix-2 FFT procedure will be executed depending on
L. After the FFT processing, the results will be written
out to the data channel via the output data port. Both
synchronization and data transfer are done by the TTL
read and write functions. The procedures for sparse
FFT and radix-2 FFT are software implementations in
C/C++, but they can also be replaced by equivalent
hardware implementations; for example, configurations
for the Montium processor.

4.4 Results

We applied the reconfigurable sparse FFT to an OFDM
receiver based on the specification in [10] for the AAF
system. The OFDM parameter set under consideration
is shown in Table 1. The bandwidth for the OFDM
system is 5.12 MHz and there are 512 subcarriers in
one OFDM symbol. Thus, subcarrier spacing Af is
10 kHz and the useful symbol part duration 7, is 100 ps.
Therefore, we need a 512-point FFT to process an
OFDM symbol, where some subcarriers might be zero
according to the bit allocation vector. In Fig. 5, we
show an example of the sparse FFT reconfiguration
for the given OFDM system. We denote all the zero
output indexes of the FFT with 0 and non-zero indexes

Senario 1

0 100 200 300 400 500

Senario 2

0 100 200 300 400 500
Sample index

Figure 5 Example of reconfiguration

@ Springer

Table 2 C tati o
e omputation Complex multiplication

workload of the FFT task -)
(instruction count)
S1 2304
Sy 1928

with 1. In Scenario 1, 420 of 512 indexes are non-zeros
which means that most of the subcarriers can be used
by Cognitive Radio. To avoid causing interference to
a potential licensed user, Cognitive Radio has to switch
off a certain number subcarriers and re-assign the trans-
mitted information to the available subchannels. This
corresponds to Scenario 2 where only 56 out of 512
indexes are non-zeros. From Scenario 1 to Scenario 2,
the FFT task is reconfigured from a radix-2 FFT to
a sparse FFT. The high level TTL implementation
has been run on a Linux PC. The computation result
verifies the functional correctness of the sparse FFT.
The TTL run-time environment can generate high level
profile information in terms of computation workload
and communication workload. The computation work-
load is measured by counting the number of anno-
tated instructions while the communication workload is
measured by counting the number tokens (data units)
that are travelling through the TTL channels. Table 2
shows the computation workload of the FFT task in two
scenarios generated by TTL. The reduction of compu-
tation in Scenario 2 is due to the sparse FFT which takes
advantage of sparse data. Considering that the worst
case execution time for processing an OFDM symbol is
100 ps, we estimate the minimum required processing
capacity for the S; and S, in Table 3. The profile in-
formation generated by the TTL run-time environment
is independent of platforms. However, it can help to
generate the platform dependent profile for specific
implementations. By associating execution times with
instructions, and by multiplying these execution times
with the instruction counts, one can obtain a rough
estimate of total execution time of a task on a certain
processor. Considering the Montium for the FFT task,
the Montium can execute one complex multiplication
instruction in one clock cycle. From Table 3, we find
that the Montium has to run at at least 23 MHz for
Scenario 1 and 19 MHz for Scenario 2. In other words,
the sparse FFT will save 16% processing capacity. Such
a reconfiguration only takes place when the bit allo-

Table 3 Minimum processing Complex multiplications

requirements
(per second)
Sy 23 x10°
S, 19 x 10°

Mobile Netw Appl (2008) 13:424-430

429

computation workload of sparse FFT
2500 T T T T T T

2000 b

1500 b

1000 b

complex multiplications

500 b

8 16 32 64 128 256
number of non—zeros L

Figure 6 Computation workload of sparse FFT for 512 samples

cation vector has been updated. We expect the bit
allocation vector not to change very often: at least it will
be constant over several OFDM frames. Therefore the
reconfiguration overhead is relatively small compared
to the saving of computations. From the TTL profile
information, we compare the computation workload
of 512-point sparse FFT for various L with different
zero distributions. Figure 6 shows that the computation
workload increases with the number of non-zero L.

5 Future work

Based on the TTL model, the reconfigurable sparse
FFT will be mapped onto the proposed MPSoC plat-
form. Some software implementations are ready to
be ported to the platform. For example, the C code
for the configuration manager can be compiled for an
ARM processor. Hardware implementations such as
the Montium configuration for the sparse FFT will also
be ported to the platform. Our ultimate goal is to de-
velop the entire Cognitive Radio baseband application
in the TTL framework. Based on the TTL model, the
Cognitive Radio baseband application will be mapped
onto the proposed MPSoC platform.

6 Conclusion

In this paper we have presented a system level design
methodology for mapping Cognitive Radio onto an
MPSoC platform. The design methodology is based
on a TTL interface to partition the application into
communicating tasks. By making the communication
explicit, the computation (task) is implemented sepa-

rately from the communication. We show a design case
on a novel FFT for OFDM based Cognitive Radio.
This sparse FFT takes advantage of sparse data and
results in a computation complexity reduction. The
reconfigurable sparse FFT has been implemented in the
TTL framework. From the design case, we conclude
that TTL offers the following advantages:

e the functional correctness of the algorithm has been
verified at a system level

e the TTL programming model facilitates the appli-
cation partitioning and the task based implementa-
tion on MPSoCs

e the profile information given by the TTL run-time
environment is used for the computation and com-
munication complexity analysis at a system level;
therefore design trade-offs can be made at an early
design stage

e TTL is suitable for modelling a reconfigurable
application

e the TTL code is portable to the reconfigurable
platform.

In conclusion, TTL is a suitable design methodology for
mapping Cognitive Radio on a reconfigurable MPSoC.
It brings Cognitive Radio from a novel idea closer to
a reality.

Acknowledgements We acknowledge the support for the TTL
interface approach by Philips Research. The work is sponsored
by the Dutch Ministry of Economic affairs Freeband AAF
project. The authors would like to thank their colleagues from
the International Research Centre for Telecommunications-
transmission and radar of the Technical University Delft and the
Signal and System group at the University of Twente for the
fruitful discussions in the AAF project.

Open Access This article is distributed under the terms of the
Creative Commons Attribution Noncommercial License which
permits any noncommercial use, distribution, and reproduction
in any medium, provided the original author(s) and source are
credited.

References

1. Mitola J III (2000) Cognitive radio: an integrated agent archi-
tecture for software defined radio. PhD thesis, Royal Institute
of Technology

2. Haykin S (2005) Cognitive radio: brain-empowered wireless
communication. IEEE J Sel Areas Commun 23(2):201-220,
February

3. Weiss TA, Jondral FK (2004) Spectrum pooling: an innov-
ative strategy for the enhancement of spectrum efficiency.
IEEE Commun Mag 42:S8-S14

4. Zhang Q, Kokkeler ABJ, Smit GIM (2006) A reconfig-
urable radio architecture for cognitive radio in emergency
networks. In: European conference on wireless technology,
Manchester, September

@ Springer

430

Mobile Netw Appl (2008) 13:424-430

5. Heysters P (2004) Coarse-grained reconfigurable processors;
flexibility meets efficiency. PhD thesis, University of Twente

6. van der Wolf P, et al. (2004) Design and programming of
embedded multiprocessors: an interface-centric approach. In:
Proceedings of ISSS+CODES, Stockholm, 8-10 September
2004

7. Zhang Q, Kokkeler ABJ, Smit GIM (2006) Adaptive OFDM
system design for cognitive radio. In: 11th international
OFDM-workshop 2006, Hamburg, August 2006

8. Zhang Q, Kokkeler ABJ, Smit GIM (2007) An efficient
fft for OFDM based cognitive radio on a reconfigurable
architecture. In: IEEE CogNet 2007 Workshop, Glasgow,
24-28 June 2007

9. Sorensen HV, Burrus S (1993) Efficient computation of the
DFT with only a subset of input or output points. IEEE Trans
Signal Process 41:1184-1200

10. Hoeksema FW, Heskamp M, Schiphorst R, Slump CH (2005)

A node architecture for disaster relief networking. In: Pro-
ceedings of the first IEEE symposium on new frontiers in dy-
namic spectrum access networks (DySPAN2005), Baltimore,
8-11 November 2005

Qiwei Zhang received his B.S. degree in electrical engineering
from Jilin University, Changchun, China, in 2002 and his M.Sc.
(with distinction) degree in wireless communication from the
University of Southampton, Southampton, UK, in 2004.

Currently he is working towards his Ph.D. degree in the
University of Twente, Enschede, The Netherlands. His research
interests include Cognitive Radio, wireless communication, sig-
nal processing and low-power embedded system design.

André B.J. Kokkeler received his M.Sc. degree in electrical
engineering from the University of Twente, Enschede, The

@ Springer

Netherlands. He finished his Ph.D. thesis entitled “Analog-
Digital Codesign using Coarse Quantization” in 2005. He
currently is an assistant professor with the faculty of EEMCS,
University of Twente, where he is involved in research projects,
sponsored by the Dutch government and industry.

After receiving the M.Sc. degree, he worked for eight years at
the Netherlands foundation for research in astronomy
(ASTRON) as a scientific project manager and more than 6 years
at Ericsson as a system engineer. Since 2003 he works at the Uni-
versity of Twente. He has a background in telecommunication,
mixed-signal design and signal processing (beamforming).
Currently, his main interest lies in the area of applying
low-power design techniques for computationally intensive
applications. The emphasis is on reconfigurable architectures for
streaming applications.

Gerard J.M. Smit

received his M.Sc. degree in electrical
engineering from the University of Twente, Enschede, The
Netherlands. He finished his Ph.D. thesis entitled “The Design of
Central Switch Communication Systems for Multimedia Appli-
cations” in 1994. He currently is a Full Professor with the faculty
of EEMCS, University of Twente, where he is responsible for
a number of research projects sponsored by the EC, industry,
and Dutch government in the field of multimedia and efficient
reconfigurable systems.

After receiving the M.Sc. degree, he worked for four years
at the Research Laboratory of Océ, Venlo, The Netherlands. In
1994, he was a Visiting Researcher with the Computer Labora-
tory, Cambridge University, Cambridge, MA, and, in 1998, he
was a Visiting Researcher with Lucent Technologies Bell Labs
Innovations, Murray Hill, NJ. Since 1999, he has been leading
the CHAMELEON group, which investigates new hardware and
software architectures for energy-efficient systems. Currently,
his research interests include low-power communication, and
reconfigurable architectures for energy reduction.

	Cognitive Radio Design on an MPSoC Reconfigurable Platform
	Abstract
	Introduction
	Multiprocessor system-on-chip for cognitive radio
	TTL design methodology
	Design case: a low complexity fast Fourier transform for OFDM based cognitive radio
	OFDM based cognitive radio
	Sparse FFT
	The TTL implementation
	Results

	Future work
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

