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ABSTRACT
Wireless networks offer novel means to enhance social interactions.
In particular, peer-to-peer wireless communications enable direct
and real-time interaction with nearby devices and communities and
could extend current online social networks by providing comple-
mentary services including real-time friend and community detec-
tion and localized data sharing without infrastructure requirement.
After years of research, the deployment of such peer-to-peer wire-
less networks is finally being considered. A fundamental primitive
is the ability to discover geographic proximity of specific communi-
ties of people (e.g, friends or neighbors). To do so, mobile devices
must exchange some community identifiers or messages. We inves-
tigate privacy threats introduced by such communications, in par-
ticular, adversarial community detection. We use the general con-
cept of community pseudonyms to abstract anonymous community
identification mechanisms and define two distinct notions of com-
munity privacy by using a challenge-response methodology. An
extensive cost analysis and simulation results throw further light
on the feasibility of these mechanisms in the upcoming generation
of wireless peer-to-peer networks.

1. INTRODUCTION
Communities are groups of interacting people sharing common

interests, proximity or social relations [36]. They are fundamental
to social structure as humans naturally organize their lives around
communities they belong to. Sociological trends [41] show that,
due to the pressures of time, money, mobility, and technology, peo-
ple are increasingly withdrawing from communities and discon-
necting from their local environment. Consequently, social struc-
tures (and social capital) are disintegrating. Technologies that bet-
ter connect users with their communities and local environment
may counter those trends.

Peer-to-peer wireless communications are part of the efforts that
seek to create new structures to facilitate engagement, rekindle lost
interactions and reconnect with local environments. In addition
to infrastructure-based communications (e.g., cellular or WLAN),
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peer-to-peer communications (e.g., WiFi in ad hoc mode or Blue-
tooth) enable direct interactions with nearby users, and thus context-
awareness: mobile devices can sense their environment. As wire-
less communications depend on the geographic proximity of mo-
bile devices, peer-to-peer communications provide new ways to
share information in real-time for local-area social networking [3,
4, 6, 7, 38], dating [1, 2, 30], gaming [5], or personal safety [39]. To
meet the demand for such localized communications, corporations
are developing wireless peer-to-peer technologies such as Nokia
Instant Community [13] and Qualcomm FlashLinQ [31]. 1

We study a communication primitive of peer-to-peer wireless
technologies that enables users to discover the proximity of spe-
cific communities. Users subscribe to communities of interest and
their devices then automatically detect wireless messages sent to
their community by other members. For example, users can join the
community of their local neighborhood (e.g., computer science lab)
on Facebook. Using wireless peer-to-peer, they can then obtain rel-
evant information in real-time about community events from other
community members in proximity (e.g., upcoming lunch break).
Wireless peer-to-peer complements infrastructure-based commu-
nications by encouraging participation, incentivizing community
building and facilitating connection with the local environment.

Sharing information locally in a peer-to-peer fashion leaks data
to wireless eavesdroppers, notably putting data privacy and loca-
tion privacy at risk. In addition to the above two, the notion of com-
munities brings forth a new set of privacy threat, namely community
privacy: users from the same community could be linked, thus ex-
posing their social relations [21]. For example, eavesdroppers may
learn that two users are part of a controversial political party. Sim-
ilarly, users’ memberships to communities reveals their interests.
For example, eavesdroppers may learn whether users passing by a
city center belong to a community from a rich neighborhood. Com-
munity privacy also affects location and data privacy as it might be
easier to infer information about an individual if it is known to be-
long to a specific community.

The upcoming generation of mobile computing thus requires mech-
anisms to anonymously identify communities. Existing work sug-
gests the use of anonymous credentials [18] and group/ring sig-
natures [19, 42]. Although these techniques protect authentica-
tors’ privacy, they leak community membership to eavesdroppers.
Mechanisms such as Key-private encryption [11], affiliation-hiding
envelopes [29], hidden credentials [15] and oblivious signature-
based envelopes (OSBEs) [33] can privately share information with

91Note as well that as cellular networks approach their theoreti-
cal communication limits, peer-to-peer wireless offer an alternative
to further extend wireless throughput between local devices.
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members of a group. However, anyone is able to send messages to
a given group when only community members are authorized to
communicate with other members. With Private set intersection
(PSI) [23], several parties can input their community membership
as a list of community identifiers, execute the PSI protocol and ob-
tain common communities. But PSI computes the pair-wise inter-
section of the entire input sets of the communicating parties. It does
not scale well for a large number of users and communities.

Affiliation-hiding authentication schemes (secret handshakes) [10]
and their extension (Affiliation-Hiding Authenticated Key Exchange
(AH-AKE) [26]) enable anonymous authentication of group mem-
bers with linear complexity for communities discovery [34]. Secret
handshakes require exchange of messages and execution of cryp-
tographic operations to authenticate other group members. For ex-
ample, state-of-the-art AH-AKE [26] requires three communica-
tion rounds and two (multi) exponentiations per party and com-
munity. Secret handshakes work well for Internet-based scenar-
ios. But in peer-to-peer wireless networks, users will encounter
a large number of devices for a short period of time, e.g., dozens
of encounters per minute in a city center, thus frequently invoking
group-identification mechanisms. In particular, as interactions are
short-lived, these group-identification mechanisms have to operate
fast. In addition, battery constraints hinder the use of computation
and communication intensive operations.

Previous work on secret handshakes suggests the use of one-time
pseudonyms to achieve unlinkability. However, single-use pseu-
donyms may require too much storage. Some solutions provide
cryptographic unlinkability using zero-knowledge proofs [28] or
Key-Private Group Key Management Schemes [27], thus entail-
ing a high cost (communication- and computation-wise). Other
solutions include heuristics where users achieve unlinkability by
rotating through a small set of pseudonyms, by setting strict time
limits on the use of each pseudonym, by using k-anonymous tech-
niques [48], or by associating different pseudonyms with different
locations [26]. Yet, the achievable privacy is unclear.

In view of the extensive literature on anonymous group commu-
nications and their shortcomings for use in peer-to-peer wireless
networks, we aim make to make the following novel contributions:

1. We formally define and quantify the notion of community
privacy in such networks.

2. By means of a community pseudonym-based framework, we
study four categories of community identification schemes.

3. We evaluate, both analytically and using simulations, the pri-
vacy and cost of these schemes, including existing secret
handshake-based schemes.

2. PRELIMINARIES
We introduce next the assumptions made throughout the paper.

2.1 Network Model
We consider a network composed of personal mobile devices that

can communicate with an infrastructure such as cellular or WLAN,
and in a peer-to-peer fashion upon coming in radio range (e.g., WiFi
or Bluetooth). We define U = {U1, ...,Un} as the set of users in the
network, where n is the total number of users. Mobile devices have
a link-layer identifier (i.e., MAC address), network-layer identifier
(i.e., IP address) and may have application-layer identifiers (i.e.,
usernames or cookies). Let IDk(t) refer to all identifiers of user
Uk at time t; we call IDk(t) a user pseudonym. A trusted Central
Authority (CA) (in practice, a service provider such as Verisign,

Facebook or cellular operator) manages authentication and mes-
sage confidentiality. Users periodically obtain appropriate authen-
tication credentials (i.e., asymmetric keys) from the CA. The CA
may not always be available because of factors such as access costs
or limited network availability.

2.2 Community Model
In this work, we define a community as a group of interacting

users (in the network model described above) sharing common in-
terests. All users in the network can be represented in a graph with
a vertex for each user and an edge between two users that are re-
lated or share an interest. A community can be then be seen as
a complete subgraph or a union of several complete subgraphs that
share many of their vertices [36]. In this work, we assume that com-
munities can be centrally formed, for example, in an online fashion
such as in Facebook groups or created in a distributed and localized
fashion by users using wireless peer-to-peer communications.

Let us define C = {C1,C2, ...,Cm} as the set of communities
where m is the number of communities in the network. Each com-
munity Ci is composed of a set of users Ci = {Uk} and has private
credentials SKi (i.e., a secret) known only to all community mem-
bers. At time t, a community is identified by one or multiple com-
munity pseudonyms PCi(t) = {pi, j} where j is the jth pseudonym.
We focus for simplicity on a time period during which community
pseudonyms do not change and write PCi(t) = PCi . The set of all
community pseudonyms in the system is then P =

⋃
i PCi . Com-

munity pseudonyms are generated using a community pseudonym
scheme (discussed in Section 4). We consider that each user be-
longs to a fixed number of communities nc and has knowledge of
all valid pseudonyms of that community.

2.3 Communication Model
As in this work we focus on the privacy of community mem-

bers interacting in a localized and close-range setting, we assume
that users communicate with each other only using wireless peer-
to-peer communications. Users use infrastructure-based commu-
nications to access CA and third-party services containing com-
munity membership information. In order to automatically detect
the presence of other users in radio range, mobile devices period-
ically broadcast proximity beacons of the form Uk → ∗ : IDk(t) | t
where IDk(t) is the user pseudonym of Uk at time t. We consider an
energy-efficient contention-based beaconing mode, similar to the
one used in IEEE 802.11 ad hoc mode which distributes the bea-
coning task uniformly in the user neighborhood. A mobile user
may reply directly to the sender with a unicast message.

In addition to unicast (user-user) interactions, mobile users can
exchange information with user groups or communities. A com-
munity packet is a message sent to a community of users which
contains a community pseudonym that serves to identify the com-
munity. Community packets broadcasted by user Uk to community
Ci at time t have the following form, Uk → Ci : IDk(t) | pi, j | msg
where pi, j is the j-th community pseudonym of Ci (i.e., packet des-
tination) and msg is the message. Receivers who belong to Ci have
knowledge of all pseudonyms of Ci and rely on pi, j to detect mes-
sages sent to this community. Unicast messages of the following
form U j →Uk : ID j(t) | IDk(t) | msg can then be used to establish
communication channel with members of the same community. In
order to identify members of the same or a particular community
in the neighborhood, users advertise all communities they belong
to using such community packets. Moreover, all communications,
i.e., both unicast and community packets, are multi-hop and stan-
dard energy-efficient routing algorithms [16] are used.

2.4 Threat Model
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An adversary A can jeopardize user privacy by extracting mes-
sages content (data privacy), obtaining users’ locations (location
privacy) or detecting community members (community privacy).

In order to avoid user pseudonyms’ traceability, users can change
their pseudonyms IDk(t) over time [12, 24]. As a pseudonym
changed by an isolated node can be trivially guessed by an external
party, pseudonym changes should be coordinated in regions called
mix zones [12, 17, 25, 32]. In this work, we consider that mobile
users coordinate pseudonym changes as defined in [32] and achieve
location privacy at a low cost.

In some cases, users may broadcast private messages to other
community members, and in others they may share their messages
with everyone. Several mechanisms can be used to encrypt msg.
Without loss of generality, we consider that the CA sets up shared
secrets: upon registration to a community Ci, a user is given a sym-
metric key SKi. Community packets can thus be encrypted. Other
distributed solutions [8, 9, 20, 22, 44] could also be used. For sim-
plicity, we consider centrally generated symmetric keys and focus
on the problem of loss of community privacy due to community
pseudonyms. Revocation challenges are discussed in Section 6.

For the community privacy threat, we consider both a passive
and an active adversary. In order to abstract the adversary’s strengths
and the possible attacks on community privacy, we model the ad-
versary’s capabilities as a set of oracles as follows. A passive ad-
versary A will collect broadcast messages and obtains communica-
tion traces. By using well-known traffic analysis techniques on the
collected traces, A infers the relation between community pseudo-
nyms and communities. We call s the number of packets collected
by A . At best, A is global and collects all packets in the network.
Let OP =TrafficAnalysis(s) be the passive oracle that captures such
a traffic analysis attack. A inputs s messages to OP that outputs a
partial mapping between the pseudonyms and communities.

In addition to passive capabilities, an active A can compromise a
subset D of mobile devices. An active Oracle OA, on input D, out-
puts community memberships of D and all corresponding pseudo-
nyms. We model active attacks with four oracles OA ⊆{Q,R,J,C}.
Q=Query(D, C): Sending forged/replayed community packets of
community C to D and waiting for D’s response. A unicast re-
ply from D reveals membership to a community C. R=Reveal(D,
C): Revealing D’s membership to community C by direct access
to the devices D, e.g, hardware hacking. J=Join(D, C): Joining
community C of D, for example, using social engineering attacks.
C=Create(D, C): Creating social link with D by creating fake com-
munity C and inviting D to that community. This can be used to
identify pseudonyms of other communities of D.

3. COMMUNITY PRIVACY PROBLEM
The goal of this paper is to study the community privacy prob-

lem in the system model described above by formalizing the vari-
ous notions of community privacy. But before formalizing privacy
leakage, let us first understand the type of attacks on community
privacy that are possible considering the adversarial capabilities as
discussed in Section 2.4.
3.1 Probabilistic Attacks

In probabilistic attacks, the adversary constructs a probabilistic
mapping of community pseudonyms P to communities C . Such
a mapping between every pseudonym and its corresponding com-
munity(ies) can be represented by a weighted bipartite graph G as
shown in Fig. 1 (a). Every edge connects a vertex in P to one in
C and is weighted by the probability (estimated by the adversary
A) of linking a pseudonym to a community. Such probabilistic at-
tacks are generally carried out by a passive adversary who collects
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Figure 1: Illustration of probabilistic and deterministic attacks.
(a) Weighted bipartite graph G. (b) Weighted bipartite graph
G′ resulting from the combination of G and GA. The bold edge
between p1 and C1 belongs to GA. Assuming each community
uses a single pseudonym, the adversary can update weights of
edges in G using GA. Here, A learns all mappings between
community pseudonyms and communities.

s packets and obtains a mapping of community pseudonyms P to
communities C (or in other words G) by using the traffic analy-
sis oracle OP. The number of collected messages s indicates the
strength of A . We discuss multiple ways to obtain such graphs in
Section 5.

3.2 Deterministic Attacks
In deterministic attacks, the adversary constructs a fixed map-

ping of community pseudonyms P to communities C . The result
of such an attack can be represented by a weighted bipartite graph
GA as shown in Fig. 1 (b). If there is an edge between a vertex in
P to one in C in GA, then its weight is either 1 or 0 meaning that
the pseudonym either belongs to the community or not. Such de-
terministic attacks are generally carried out by an active adversary
who learns about communities and their pseudonyms by interacting
with the oracle OA.

Let us represent the result of applying oracle OA to device D by
W (D): W (D) is a mapping between communities and community
pseudonyms. Then, a deterministic attack is a set of calls to OA by
an active adversary A : {W1(D1), ...,W`(D`)}where ` is the number
of interactions and a system parameter indicating the strength of A .
At each interaction, A changes the device input to OA. Note that
two interactions Wi(D1),W j(D2), i 6= j may produce identical map-
pings. Similarly, an interaction may be unsuccessful and output an
empty result, Wi(D) = /0. The set of community pseudonyms PA

Ci
of Ci known to the adversary increases depending on `. In general,
GA depends on the number of different devices input to the Ora-
cle (i.e., the number of devices under attack) and the larger GA (in
terms of the number of edges) is, the more successful is the attack.
An active adversary can combine the information from the proba-
bilistic graph G to produce a more accurate version of GA and is
represented as G′ (Fig 1 (b)).
3.3 Community Privacy Properties

Based on the graph G or G′, an adversary can threaten two pri-
vacy properties, namely, Community Anonymity (CAN) and Com-
munity Unlinkability (CUN). In order to preserve community pri-
vacy, any community pseudonym scheme must satisfy both CAN
and CUN. Below we formalize each of this property.

3.3.1 Community Anonymity or CAN
Community anonymity or CAN guarantees that users cannot be

linked by third parties or non-community users to the communi-
ties they belong to, i.e., community pseudonyms do not affect the
anonymity of the community members. Informally, there is com-
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Uk1!
1 Select community Ci !
2 Generate Community Pseudonym(s) pi,k!
3 Send packet(s)!

Uk2!
1 Receive packet(s)!
2 Verify Community Pseudonym(s) pi,k!
3 If verified, Read msg and Reply!

Uk1 ! Ci : IDk | pi,k | msg!

Figure 2: Overview of community pseudonym schemes. For each community packet, users need to generate a community pseudo-
nym. Each community pseudonym scheme thus implements generate and verify functions.

munity anonymity at any time t if and only if for all communities
Ci and for all pseudonyms pi, j of Ci (at that time), only members
of Ci are able to deterministically verify that pi, j is a valid pseudo-
nym of Ci. We formalize the notion of community anonymity by
means of a challenge-response game between the adversary (who
has access to the oracles) and an unbiased challenger as follows.
For convenience, we consider the more stronger adversary model,
i.e., an active adversary.

1. A collects s messages, interacts with OP and obtains G. She
interacts ` times with oracle OA and obtains GA. She com-
bines G and GA to obtain G′.

2. A randomly queries challenger one community Ci /∈G′ (i.e.,
for which A does not have information from interactions
with oracles).

3. Challenger throws an unbiased coin and selects b ∈ {0,1}
based on the output of the coin toss. If b = 0, it sends pb ∈Ci
to A , else it sends pb /∈Ci as a challenge.

4. A decides whether pb belongs to Ci and outputs b′ (as a guess
for b).

Then, the advantage of the adversary in the community anony-
mity game is measured in terms of how successful she is in cor-
rectly guessing the community of the challenge pseudonym com-
pared to a random guess.

AdvCAN
s,` (A) = Pr(A is correct)− 1

2
(1)

where, ` is the length of the interaction of the adversary with or-
acle OA, and s is the number of messages collected by the adver-
sary. The advantage gives the relationship between the number of
interactions `, the number of messages collected s, and the prob-
ability of success of the adversary. If the adversary guesses uni-
formly at random (Pr(A is correct) = 1/2), then the advantage is
AdvCAN

s,` = 0, i.e., lowest. Similarly, if the adversary surely knows
the pseudonym membership (Pr(A is correct)= 1), then the advan-
tage is AdvCAN

s,` = 1/2, i.e., highest. In other words, the advantage
always lies in [0,1/2]. We can now define CAN based on the ad-
versary’s advantage in winning the above game:

DEFINITION 1. A community pseudonym scheme provides Com-
munity Anonymity (CAN) if and only if the advantage AdvCAN

s,` (A)

of any adversary A with s accesses to oracle OP and l accesses to
oracle OA is negligibly small.

3.3.2 Community Unlinkability
Community unlinkability or CUN guarantees that users of the

same community cannot be linked to each other as belonging to the

same community by third parties or non-community users. Infor-
mally, there is community unlinkability at any time t if and only if
for all communities Ci and for any two pseudonyms pi, j and pi,k of
Ci (at that time), only members of Ci are able to deterministically
verify that pi, j and pi,k belong to the same community. Similar
to the previous case, we use a challenge-response methodology to
formalize the notion of community unlinkability.

1. A collects s messages, interacts with OP and obtains G. She
interacts ` times with oracle OA and obtains GA. She com-
bines G and GA to obtain G′.

2. A randomly queries challenger two communities Ci,C j /∈G′
(i.e., for which A does not have information from interac-
tions with oracles).

3. Challenger throws two independent unbiased coins and se-
lects b ∈ {i, j} and d ∈ {i, j} based on the output of the coin
tosses and sends pb ∈Cb, p′d ∈Cd to A as a challenge.

4. A decides whether pb and p′d belong to the same community
and outputs yes/no.

Then, the advantage of the adversary in the community unlink-
ability game is measured in terms of how successful she is in cor-
rectly linking the challenge pseudonyms compared to a random
guess.

AdvCUN
s,` (A) = Pr(A is correct)− 1

2
(2)

Similar to CAN, we can now define CUN based on the adver-
sary’s advantage in winning the above game:

DEFINITION 2. A community pseudonym scheme provides Com-
munity Unlinkability (CUN) if and only if the advantage AdvCUN

s,` (A)

of any adversary A with s accesses to oracle OP and l accesses to
oracle OA is negligibly small.

We have the following relationship between the CAN and CUN
properties:

THEOREM 1. CUN implies CAN, but CAN does not imply CUN.

This theorem shows that unlinkability is a stronger notion than
anonymity in community identification protocols. We prove the
above theorem in Appendix A.

4. COMMUNITY PSEUDONYM SCHEMES
In order to provide efficient and anonymous identification of

communities, we propose to generate community identifiers using
symmetric cryptography. We describe four classes of community
pseudonym mechanisms and evaluate their cost and security. Each
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community pseudonym mechanism is composed of a generate and
verify function (Fig. 2). We consider that pseudonyms are defined
over B bits and thus there are M = 2B possible pseudonyms. We
assume that when community pseudonyms change, the user pseu-
donym IDk(t) changes as well, and vice versa.

4.1 Single Pseudonym Schemes
A single constant pseudonym is used per community: we have

PCi = pi where pi is chosen uniformly at random in {0,1}B and
|PCi | = 1. We consider two possible techniques to generate com-
munity pseudonyms:

i) Uk
pi,k−−→Ci

ii) Uk
pi−→Ci

i) each user uses a single pseudonym per community that is differ-
ent from that of other users from the same community (similar to
linkable secret handshakes);
ii) One pseudonym is used by all users per community (similar to
group signatures). In practice, the community pseudonym can be a
Hash: pi = H (SKi), where H (.) is a Hash function.

The sender of a message has low computation and communi-
cation overhead: it selects one pseudonym per community, i.e.,
O(m) lookups, and send one message per community it belongs
to, i.e., O(m) communications. For all community pseudonyms
received from one neighbor, a receiver has to compare these com-
munity pseudonyms to all community pseudonyms of communities
it belongs to. The complexity of such lookups depends on the data
structure used to store community pseudonyms (e.g., hashmaps or
trees). As wireless messages are broadcast in nature, lookup opera-
tions are done for each device in communication range. Assuming
hashmaps, the number of lookups at the receiver is: O(nem), where
ne is the number of encountered nodes.

One extension consists in relying on the k-anonymity concept [48].
For each community pseudonyms, users select k−1 other commu-
nity pseudonyms that they send together with their messages:

Uk
pi,

k−1︷ ︸︸ ︷
pr, pr, pr, pr, ...−−−−−−−−−−−−−→Ci

In practice, these extra community pseudonyms are chosen from
communities the sender does not belong to (e.g., pseudonyms eaves-
dropped in previous interactions) chosen at random (pr). This in-
creases the cost at the receiver as the number of lookups is O(nekm).

4.2 Multiple Pseudonyms over Entire Domain
Each community Ci is identified by a set of pseudonyms known

to all community members PCi = {pi, j} where j is the jth pseudo-
nym of Ci. To send a packet to Ci, a user randomly selects a pseudo-
nym from PCi . Receivers determine whether it is sent by a member
of their community by searching their local pseudonym repository
for received community pseudonyms. We consider two possible
generation mechanisms to assign pseudonyms across communities
such that PCi

⋂
PC j = /0,∀i 6= j:

i) Uk
pi, j∈PCi−−−−→Ci

ii) Uk
RND || HMACSKi (RND)
−−−−−−−−−−−−−−−−−→Ci

i) Pre-computed Schemes: The CA randomly splits all pseudonyms
across communities: every Ci is assigned bM/mc pseudonyms.
ii) Self-generated Schemes: Every user generates a community pseu-
donym for each message to Ci by choosing a random number RND
and computing a message authentication code: pi, j =RND || HMACSKi(RND).

For every message, a receiver verifies the HMAC with the key of
all communities it belongs to.

Pre-computed schemes result in large storage costs. If there were
at most m = 100000 communities and B = 48 bits long pseudo-
nyms, every user would store MB/8m ≈ 16 GB per community.
The sender/receiver do not perform computations. The sender does
O(m) lookups and broadcasts O(m) messages. The receiver does
O(m) lookups for each message. Given ne encountered nodes, the
receiver does a total of O(nem) lookups.

In self-generated schemes, the sender computes O(m) hashes
and sends O(m) messages. The receiver hashes all received mes-
sages with the secret key of all their communities, i.e., O(nem2)
Hashes, and compares computed hashes to the received hashes.

Hash bins [34] can reduce computation overhead to O(nem logm)
at the expense of O(m) Hashes at the sender. Index-Hiding Mes-
sage Encoding vectors (IHME) [34] can further decrease computa-
tion overhead to O(nem) by using polynomial interpolation.

4.3 Multiple Pseudonyms over Shrunk Domain
These schemes assign fewer community pseudonyms to each

community (i.e., some pseudonyms are not assigned at all). They
reduce the size of sets of community pseudonyms according to a
shrink factor h ∈ [0,1]. The goal is to reduce cost and make it
more difficult for an adversary to relate community pseudonyms
to communities (as some pseudonyms are not assigned). Formally,
we have: |PCi |= (M/m) ·h and PCi

⋂
PC j = /0,∀i 6= j. Similar to the

earlier case, we consider two mechanisms to generate pseudonyms:

i) Uk
pi, j∈PCi ,h−−−−−→Ci

ii) Uk
H (pi, j)−−−−→Ci

i) Pre-computed Schemes: The CA assigns a subset of pseudonyms
PCi,h across communities: every community Ci receives bh ·M/mc
community pseudonyms;
ii) Self-generated Schemes: All users belonging to the same com-
munity generate a Hash chain in a synchronized fashion: pi,1 =
H (SKi), pi, j+1 = H (pi, j) for 1 < j < len where len is the Hash
chain length.

In terms of storage cost of a pre-computed scheme, it is signif-
icantly lower than schemes over the entire domain. For example,
users must now store only 160 megabytes of data if h = 0.01, B =
48 and m = 100000. The receiver cost is again O(nem) lookups.

With self-generated schemes, users can verify if a message is
destined to them by checking whether received community pseudo-
nyms belong to their Hash chains. Self-generated schemes enable
verification with O(nem) lookups without online operations.

4.4 Hints: Overlapping Multiple Pseudonyms
The third multiple pseudonym scheme allows for an overlap in

the set of pseudonyms used for each community. In other words,
community pseudonyms can be used by more than one community.
Overlapping pseudonym sets creates confusion for the adversary.
We define the overlap factor o ∈ [0,1] as the fraction of community
pseudonyms shared by different communities. We use the term
“hint” because a community pseudonym does not uniquely iden-
tify a community but rather hints receivers to determine whether
a messages is destined to them. We have: PCi

⋂
PC j 6= 0 for some

i 6= j. We consider two possible mechanisms:

i) Uk
pi, j∈PCi ,o−−−−−→Ci

ii) Uk
RND || bHMACSKi (RND)co−−−−−−−−−−−−−−−−−−−→Ci
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Figure 3: Community pseudonym schemes with multiple pseudonyms per community (assuming only two communities for illustra-
tion purposes). (a) Multiple pseudonyms over the entire domain. (b) Multiple pseudonyms over a shrunk domain. (c) Overlapping
multiple pseudonyms, i.e., hints.

Table 1: Cost of community pseudonym schemes with m communities per participants and ne participants.

Technique Sender Receiver
Lookups Computation Communication Lookups Computation Memory

Single pseudonym O(m) /0 O(m) O(nem) /0 O(m)
k-anonymity O(km) /0 O(km) O(nekm) /0 O(km)

Pre-computed entire O(m) /0 O(m) O(nem) /0 O(M)
Self-generated entire O(m) O(m) O(m) /0 O(nem2) O(m)

Hash bins O(m) O(m) O(m) /0 O(nem log(m)) O(m)
IHME O(1) /0 O(m) /0 O(nem) O(m)

Pre-computed shrunk O(m) /0 O(m) O(nem) /0 O(hM)
Self-generated shrunk O(m) /0 O(m) O(nem) /0 O(len ·m)

Hints O(m) O(m) O(m) /0 O(nem2) O(m)

i) Pre-computed Schemes: The CA splits the set of all pseudonyms
across communities PCi,o but assigns some pseudonyms to multiple
communities;
ii) Self-generated Schemes: Hints can be implemented by truncat-
ing the output of the Hash method of self-generated schemes to a
smaller number of bits. Hence, several RND values have the same
Hash, thus creating identifier collisions. The larger the truncation
of the Hash is, the larger the overlap will be.

In addition to cost of self-generated schemes over the entire do-
main, users get messages that are not destined to them because of
Hash collisions (i.e., false positives). If these messages are en-
crypted, users unsuccessfully attempt decryption. The number of
unsuccessful decryptions depends on the number of collisions.

Table 1 summarizes the asymptotic communication and compu-
tation costs of the four community pseudonym scheme types out-
lined above. As computations correspond to Hash operations, they
are significantly lower than the cost of asymmetric cryptography.
Similarly, lookup operations are considerably cheaper than Hash
operations. Some schemes avoid online computations but suffer
from trivial linkability or high storage costs. Other schemes over-
come high storage costs by introducing online computations. Al-
though Hash bins provide logarithmic complexity, they are inef-
ficient communication-wise because all bins must be sent even if
users belong to few communities. IHME-based schemes are effi-
cient, but trivially linkable because of the polynomial’s uniqueness.

5. EVALUATION
We evaluate community privacy (in terms of CAN and CUN)

with respect to probabilistic and deterministic attacks. As previ-
ously described, A can obtain G from probabilistic attacks, GA
from deterministic attacks and G′ from the combination of G and
GA.

5.1 Community Anonymity Analysis
Let us define ρ = “A solves the CAN challenge”. The probabil-

ity that A successfully answers a CAN challenge depends on its
information about community pseudonyms:

σ = Pr(ρ) = Pr(ρ|pb ∈Gw)Pr(pb ∈Gw) (3)
+ Pr(ρ|pb ∈Gf)Pr(pb ∈Gf)

where Gf is the subgraph of G containing all edges with weight
equal to 0 or 1, Gw is the subgraph of G containing all edges with
weight in (0,1) and pb is the community pseudonym send to ad-
versary by the challenger. More specifically,

Pr(ρ) = ∑
Ci /∈GA

Pr(“A picks Ci”)Pr(ρi) (4)

where Pr(ρi) is Pr(“A solves the CAN challenge for Ci”). In other
words, A may know the community of pb (Gf) or have statistical
information (Gw) about the community of pb. The probabilities
Pr(pb ∈ Gx) depend on the type of adversary (i.e., probabilistic
or deterministic attacker), its strength (s and `) and on community
pseudonym schemes.

5.1.1 Probabilistic Adversary
Given Eq. (1) and (3), the CAN advantage for A is:

AdvCAN
s = Pr(ρ|pb ∈Gw)−

1
2

(5)

Indeed, in the probabilistic case, the graph Gf is empty, as the ad-
versary cannot know with probability 1 the relation between com-
munity pseudonyms and communities. Hence, we have Pr(pb ∈
Gf) = 0, or equivalently, Pr(pb ∈ Gw) = 1. Equation (5) shows
that CAN exclusively depends on the information contained in Gw,
i.e., A’s ability to link community pseudonyms to communities.

5.1.2 Deterministic Adversary
An deterministic adversary A knows the relation between some

community pseudonyms and communities with probability 1. The
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Figure 4: Numerical evaluation of advantage of probabilistic and deterministic adversary. (a) AdvCAN
s,` and (b) AdvCUN

s,` . AdvCAN
s

(AdvCUN
s ) corresponds to AdvCAN

s,` (AdvCUN
s,` ) with α′ = 1.

CAN advantage is then:

AdvCAN
s,` =

{
(Pr(ρ|pb ∈G′w)α′+(1−α′))− 1

2 if |v′f |< |P |−1
1
2 else

(6)

with

α
′ =

1
2

1
|V | ∑

v∈V

|ev
w|
|ev|

+
1
2

1
|V | ∑

v∈V

|ew|− |ev
w|

|e|− |ev|
(7)

where G′w is the subgraph of G′ containing all edges with weight
in (0,1), G′f is the subgraph of G′ containing all edges with weight
equal to 0 or 1, V is the set of nodes in the communities of G′, v′f
are the nodes in V with an edge with weight 1, ew are the edges
in G′w, ev are the edges connected to a node v, ev

w are the edges in
G′w connected to a node v, P is the set of all community pseudo-
nyms, α′ is the probability that a pseudonym belongs to G′w and
1−α′ is the probability that a pseudonym belongs to G′f. Equa-
tion (6) indicates that with probability 1−α′ the adversary knows
the challenge and is always successful, whereas with probability
α′, the adversary guesses based on G′w. The probability α′ first de-
pends on the probability that the challenger selects the community
Ci queried by A (1/2) and on edges’ proportion that belong to G′w
in Ci. Second, it depends on the probability that the challenger does
not select the Ci queried by A (1/2) and on edges’ proportion that
belong to G′w in C −Ci.

If α′ = 0 (i.e., community pseudonyms exclusively belong to G′f
as ` is large), then AdvCAN

s,` = 1/2 indicating that A always guesses
right. If α′ = 1 (i.e., community pseudonyms exclusively in G′w),
then AdvCAN

s,` = Pr(ρ|pb ∈G′w)−1/2 as for probabilistic A .

5.2 Community Unlinkability Analysis
Let us define υ = “A solves the CUN challenge”. As before, we

can write:

µ = Pr(υ) = Pr(υ|pb, pd ∈Gf)Pr(pb, pd ∈Gf) (8)
+ Pr(υ|pb, pd ∈Gw)Pr(pb, pd ∈Gw)

+ Pr(υ|pb ∈Gf, pd ∈Gw)Pr(pb ∈Gf, pd ∈Gw)

+ Pr(υ|pb ∈Gw, pd ∈Gf)Pr(pb ∈Gw, pd ∈Gf)

5.2.1 Probabilistic Adversary

Given Eq. (2) and (8), the CUN advantage is:

AdvCUN
s = Pr(υ|pb, pd ∈Gw)−

1
2

(9)

Theorem 1 shows that if A breaks CAN challenge, i.e., σ∈ (0.5,1],
then it also breaks CUN. Hence, the probability of breaking the
CUN challenge in the passive case η is:

η = Pr(υ|pb, pd ∈Gw) = σ
2 +

(1−σ)2

2
+

σ(1−σ)

2
(10)

The advantage is obtained as follows: in the probabilistic case,
Gf is empty. Hence, we have Pr(pb, pd ∈Gf) = Pr(pb ∈Gw, pd ∈
Gf) = Pr(pb ∈ Gf, pd ∈ Gw) = 0 and Pr(pb, pd ∈ Gw) = 1. We
relate the probability of success υ to the probability of success σ as
A can run the CAN challenge response protocol for both communi-
ties, and this determines its success rate for the CUN challenge: A
can guess both CAN challenges correctly (σ2); A cannot guess both
CAN challenges correctly but answers the CUN challenge correctly
((1−σ)2/2); or A can guess one of the CAN challenges correctly
and CUN correctly (σ(1−σ)/2).

We observe that if σ = 0 (meaning that A does not break CAN),
then η= 1/2 and the advantage is minimum. Instead, if σ= 1, then
the probability of success η = 1, indicating that the adversary has
maximum advantage.

5.2.2 Deterministic Adversary
If A is a deterministic adversary, it discovers the relation between

some community pseudonyms and communities. Using Eq. (3)
and (8), we compute the advantage:

AdvCUN
s,` = (1−α

′)2 +ηα
′2 +2σ

′
α
′(1−α

′)− 1
2

(11)

We obtain the above formula by relating the CUN advantage to the
CAN challenge response game. With probability (1−α′)2, A is
given two pseudonyms that it knows (in G′f) and always guesses
correctly. With probability α′2, A does not know any of the pseu-
donyms and guess with success η. Finally, with probability α′(1−
α′), A knows one of the two pseudonyms and guesses the other
pseudonym with success σ′.

If σ′ = 1/2 (i.e., CAN algorithm does not help), then the advan-
tage is 1−α′+α′2/2. If α′ = 0, then the advantage is maximal
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Figure 5: CAN and CUN Advantages obtained in simulations of a probabilistic and deterministic adversary for different community
pseudonym schemes. (a) AdvCAN

s with respect to the number of collected messages s and (b) AdvCAN
s,l with respect to the fraction of

compromised devices `/n. (c) AdvCUN
s with respect to the number of collected messages s and (d) AdvCUN

s,l with respect to the fraction
of compromised devices `/n.

(0.5). Instead, if α′ = 1, then the advantage is minimal (0). If
σ = 1′, then the advantage is maximal (0.5) for any value of α′ in-
dicating that if A solves the CAN challenge, it also solve the CUN
challenge. As we assume CUN attack based on CAN attack, Eqs.
10 and 11 are lower-bounds for CUN attack’s success. A could
obtain better solutions independent of CAN advantage.

5.3 Empirical Evaluation
In order to better understand the analysis presented earlier, we

numerically evaluate the CAN/CUN advantages for the commu-
nity pseudonym schemes outlined earlier under different adversar-
ial assumptions. We later verify these numerical evaluations using
simulation experiments.

5.3.1 Numerical Evaluation
In Fig. 4, we numerically evaluate CAN and CUN advantages

with respect to σ and α′ by plotting (6) and (11). We observe in
Fig. 4 (a) that the probabilistic or passive CAN advantage (α′ = 1)
increases linearly with σ. Probability σ is an increasing function of
s that depends on adversary’s attack and on community pseudonym
schemes. In general, the higher the number of collected messages s
is, the higher the advantage of the adversary is. In contrast, the pas-
sive CUN advantage (Fig. 4 (b) with α′ = 1) increases non-linearly
as indicated in Eq. (10). We observe that as α′ decreases, the ad-
vantage dramatically increases meaning that compromising devices

considerably helps the adversary. This shows how breaking CAN
affects the success probability of CUN. We now investigate with
simulations the missing relation between σ and s.

5.3.2 Simulation Setup
Our simulator models mobile users using aforementioned com-

munity pseudonym schemes and probabilistic/deterministic attacks
on community privacy. We consider n = 50 users moving at con-
stant speed on a grid of 1km × 1km with one meter steps using
traditional random walk mobility [46]. Directions are chosen out
of [0,2π] with granularity π/2. Nodes are in communication range
if they are within 100 meters. We consider that there are m = 20
communities and M = 100000 community pseudonyms, that users
belong to nc = 6 communities, and that users interact with com-
munication protocol of Section 2. In a time slot t, devices send a
message to all their communities and, if possible, change commu-
nity pseudonyms. A collects all messages: s = t ·n ·nc.

5.3.3 Attack Description
In our simulations, the goal of the probabilistic adversary A is to

obtain the graph G relating community pseudonyms and commu-
nities. The attack consists of traffic analysis and community detec-
tion. With traffic analysis, A obtains a graph Ge where community
pseudonyms are nodes, and weighted edges indicate the probabil-
ity that community pseudonyms belong to the same community.

8



A links community pseudonyms based on wireless communication
patterns. A unicast communication occurring after two nodes A
and B exchange community pseudonyms indicates that they have
at least one community in common. A thus links community pseu-
donyms of A to those of B.

A then groups community pseudonyms into communities using
community detection algorithms on graph Ge. Previous work [14]
obtained efficient community detection algorithms on graphs. In
our setting, we use adversarial community detection [35] algo-
rithms as standard community detection algorithms may fail be-
cause of the use of community pseudonyms. After A infers com-
munities, it must guess the relation between inferred and real com-
munities relying on background information on communities pro-
file. We consider a strong A that correctly maps inferred commu-
nities to corresponding real identities. In reality, determining this
mapping is non-trivial, but we leave this for future work. We com-
pute the probability of success of A by considering the overlap and
non-overlap between inferred and real communities.

The deterministic adversary A performs a similar attack except
that she, in addition to the above, selects at random ` devices to
compromise. She is able to determine all the communities (and
their pseudonyms) of the compromised devices.

The above adversary model could be extended in the future with
attacks that are ‘tailored’ to each community pseudonym scheme.

5.3.4 Simulation Results
The goal of this section is to study how the different community

pseudonym schemes perform with respect to each other under the
above attack.

In Fig. 5 (a) and (c), we show the CAN and CUN advantages
in the case of a probabilistic adversary. We observe that the ad-
versary’s advantage usually increases with the number of collected
messages s. The fixed single pseudonym scheme (Single Pseudo-
nym Fixed) does not provide CUN because the adversary can triv-
ially link together broadcast community pseudonyms. In contrast,
the single pseudonym scheme similar to linkable secret handshakes
(Single Pseudonym SH) results in a low advantage because com-
munity pseudonyms broadcasted by mobile devices are always the
same for a given user and different from others. Linkable secret
handshakes schemes protect community privacy. Nevertheless, A
trivially tracks users’ whereabouts, thus jeopardizing location pri-
vacy.

The multiple pseudonym scheme over the entire domain results
in the lowest advantage because pseudonyms are rarely reused (i.e.,
M is large) and provides location privacy. As soon as M decreases
(Multiple Pseudonym Shrunk with h = 0.01), the advantage in-
creases considerably, i.e., reusing community pseudonyms reduces
community privacy, as A can then correlate different messages.

Hints attenuate the negative effect of a shrunk community pseu-
donym set. We implement Hints with the shrunk scheme h = 0.01
and by selecting community pseudonyms with repetitions. Hints
have lower advantage than the shrunk scheme as they introduce
confusion: community pseudonyms are reused for different pur-
poses. Hence, Hints extend the lifetime of shrunk sets of pseudo-
nyms.

The k-anonymous scheme complements the single pseudonym
SH scheme by selecting k−1 other community pseudonyms [48].
Extra community pseudonyms are chosen from communities the
sender does not belong to (e.g., pseudonyms eavesdropped in pre-
vious interactions). We observe that the k-anonymous scheme with
k = 3 performs worse than the single pseudonym SH scheme. The
graph Ge (Fig. 6) shows that A can distinguish communities be-
cause the k− 1 community pseudonyms leak additional informa-

tion: A learns that groups of pseudonyms do not belong to the
same community. With a k-anonymous scheme, the advantage
even increases faster than the shrunk domain approach. Hence, k-
anonymous schemes are similar to raw single pseudonym SH sche-
mes and do not provide increased privacy.

In Figures 5 (b) and (d), we show the advantage of the determin-
istic adversary with respect to the fraction of compromised devices
`/n averaged across all values of s. We observe that the increase
of the advantage is non-linear: even if devices are compromised at
random, compromising a fraction of those devices suffices to af-
fect community privacy. A may target devices that belong to many
communities to improve its effectiveness.

The simulation-based advantages can be mapped to numerical
results in Fig. 4. Our numerical model allows us to evaluate the
performance of the attack and the community pseudonym scheme.
For example, our numerical results give minimum/maximum ad-
vantage of deterministic adversary for different α′. We can map
simulation-based advantage with a value of s and a number of com-
promised devices l to a point in Fig. 4.

6. DISCUSSION
The notion of community pseudonyms applies to any underlying

encryption mechanisms. We assume for simplicity that symmet-
ric keys are centrally generated and distributed to mobile devices.
Other distributed solutions such as attributed-based encryption [9]
provide easier management of revocation and forward secrecy. Un-
fortunately, they generally incur higher computation and commu-
nication costs. We describe for completeness how to provide revo-
cation and forward secrecy with centrally generated keys. We also
discuss the relation between this work and secret handshakes.

6.1 Forward Secrecy and Revocation
The symmetric key shared by community members can be used

as a digital credential to authenticate other community members
and encrypt communications. However, such a widely shared se-
cret could leak if one community member is compromised or mali-
cious. Hence, pseudonym schemes using symmetric cryptography
do not provide forward secrecy: if the secret key of a community
is leaked, then all community pseudonyms, even the ones gener-
ated before the leak [47], are no longer trustworthy. In addition, an
adversary that obtains a community secret can break community
privacy by observing the messages broadcast by other users.

For forward secrecy, community pseudonym schemes based on
symmetric key cryptography can be modified to change over time
the shared secret of communities. As investigated in [47], sym-
metric key updates should be generated in mobile devices in a dis-
tributed fashion, e.g., relying on pseudo-random functions. The
symmetric key re-keying can also be done relying on the asym-
metric credentials of users as described in [37]. Such re-keying
operations are also needed when new members join a community
or existing members leave the community (e.g., for revocation).

Rekeying operations require coordination among all community
members. We argue that the cost of coordinating key updates is
lower than the cost of relying on asymmetric cryptography to ob-
tain similar properties. In the case of peer-to-peer wireless net-
works, symmetric keys of communities could be changed at regular
interval as suggested in [43] to minimize costs. In addition, mobile
devices can communicate with the CA in order to check whether
they are using the correct secret.

The detection of misbehaving community members can be dif-
ficult with symmetric cryptography. For example, any community
member can broadcast spam messages to other community mem-
bers, and as the sender is not uniquely authenticated, he may be

9
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Figure 6: Graph Ge resulting from a traffic analysis attack on a k-anonymous scheme with number of communities m = 10, number
of communities users belong to nc = 3 and k= 3. Nodes are community pseudonyms and edges indicate the possibility that community
pseudonyms belong to the same community. The color of a node indicates the most likely community it is inferred to belong to. (a)
t = 1, (b) t = 2000, (c) t = 5000 and (d) t = 10000.

difficult to identify. This problem can be overcome with the use
of digital signatures within the secure channel established with the
symmetric key of the community. In the event of a spamming at-
tack, community members can require other members to use their
PKI credentials in their messages [45]. This will induce a larger
cost on all community members in the region of the network where
the spamming attack is taking place. Users now authenticated with
their personal credentials can be reported to a central server and re-
voked by using traditional revocation algorithms [49]. Such mech-
anism could also detect the presence of Sybil attacks.

6.2 Relation with Secret Handshakes
Community pseudonym schemes achieve similar properties as

secret handshake schemes. Notably as in [45], they consider a spe-
cial type of secret handshake in order to reduce cost: i) for compu-
tation cost, symmetric cryptography is used; ii) for communication
cost, a single message is required to determine whether a message
is destined to a community. In general, results obtained with com-
munity pseudonym schemes affect secret handshakes as follow:

• Most secret handshakes use a single pseudonym in the initi-
ation message and are thus linkable. This is similar to single
pseudonym schemes. Our results show that linkability de-
feats the privacy provided by secret handshakes as an adver-
sary can easily infer communities users belong to.

• Previous work suggests heuristics to obtain unlinkable secret
handshakes. One solution is to rotate through a small set of
pseudonyms. This is similar to the shrunk community pseu-
donym scheme. Our results show that if the set of pseudo-
nyms is not large enough, the adversary will infer communi-
ties that users belong to.

• Previous work also suggests to set strict time limits on the
use of each pseudonym. This is similar to the scheme where
multiple pseudonyms are used over the entire domain. Our
results show that such approach provides privacy as long as
the time period over which a given pseudonym is used is kept
short.

• Previous work also suggests the use of k-anonymity. Besides
significantly increasing cost, our results also indicate that k-
anonymous schemes are, at best, detrimental to community
privacy.

In other words, our work shows how unlinkable secret handshake
heuristics may fail in practice and highlights the need to understand
the context in which security primitives are used.

Secret handshakes schemes also assume that dummy messages
obfuscate unsuccessful handshakes to the adversary. Hence, an ad-

versary is unable to learn whether an interaction between two de-
vices was successful. Unfortunately, this generates a significant
cost because in practice: i) most interactions are unsuccessful; ii) it
is not trivial to generate dummy messages that appear legitimate. In
this work, as we are cost-averse, we assumed that dummy messages
are not used. The adversary is thus able to observe unsuccessful in-
teractions and learn from them. Even if an adversary was unable to
do so (i.e., dummy messages are used), it would still learn from in-
teractions because multiple community pseudonyms coming from
one device have a higher chance of being from different commu-
nities. Hence, the adversary would still break community privacy,
albeit with a lower advantage.

7. CONCLUSION
In this paper, we considered the problem of community privacy

in peer-to-peer wireless networks and evaluated privacy risks of in-
formation sharing within communities in such networks. Identify-
ing the need to protect community privacy, we proposed a frame-
work based on challenge-response games to study it. An interest-
ing outcome of the framework is the analytical relation obtained
between community anonymity and community unlinkability. The
relation between these two properties was previously studied [40].
To the best of our knowledge, we are the first to analytically relate
these properties.

By means of simulations, we evaluated the privacy provided by
different pseudonym-based community privacy-preserving schemes.
Our results throw light on the relationship between community pseudonym-
based and secret handshake schemes: shrinking the number of pos-
sible community pseudonyms significantly reduces the achievable
privacy. Hence, it is not advisable to cycle through a small set of
pseudonyms with secret handshakes. This result illustrates the del-
icate trade-off between the achievable community privacy and the
cost of community pseudonym schemes. Our analysis enables sys-
tem designers to tune their shrunk scheme to a desired privacy level
by, for example, regularly changing the set of community pseudo-
nyms. We also showed that reusing pseudonyms across communi-
ties (Hints) can provide a good cost/privacy trade-off and demon-
strated that k-anonymous schemes are, at best, detrimental to com-
munity privacy. In the future, we intend to investigate other com-
munication models and, by means of practical implementations,
study the extra overhead introduced by community pseudonym sche-
mes.
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APPENDIX
A. PROOF OF THEOREM 1

PROOF. We prove the first part of Theorem 1 by showing that
ability to breach community anonymity (CAN) implies ability to
breach community unlinkability (CUN) as well.

Hence, let an arbitrarily chosen algorithm for breaching com-
munity anonymity be ACAN(p j,Ci). The algorithm outputs yes if
p j ∈Ci and no if p j 6∈Ci. We have for some communities Ci (that
do not belong to the graph G′):

σ = Pr(ACAN(p j,Ci) is correct)>
1
2

Given ACAN , we can now construct a probabilistic algorithm, ACUN(p j, pk),
for deciding whether any two community pseudonyms belong to
the same community or not:

1. Given community pseudonyms p j and pk each of which be-
long to either a community C0 or to a community C1.

2. Call ACAN(p j,C0) and guess if p j ∈C0.

3. Call ACAN(pk,C0) and guess if pk ∈C0.

4. Output yes if the two guesses both say yes or both say no, else
output no.

The probability of success of ACUN(p j, pk) is µ = σ2 +(1−σ)2

where σ2 corresponds to the case ACAN guesses both p j and pk cor-
rectly, and (1−σ)2 corresponds to the case where ACAN does not
guess either p j or pk correctly (but the final answer still is correct).

We observe that when σ = 0.5, we have µ = 0.5, when σ > 0.5,
we have µ > 0.5 and when σ = 1, we have µ = 1. Hence, regardless
of how the challenger chooses C0 and C1, we obtain that ACUN suc-
ceeds with probability greater than a random guess. This completes
the first part of the proof.

We prove the second part by giving an example of a pseudonym
scheme that has the property of CAN but not the property of CUN.
We consider a scheme where every community is given a single
community pseudonym. This kind of scheme was introduced in
section 4.1. Within a community, all users share the same pseudo-
nym which has been chosen randomly. Consequently, community
messages are trivially linkable, hence we do not have CUN. On the
other hand, an adversary cannot break anonymity because it does
not know how to relate pseudonyms to communities. Hence, there
is CAN.
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