Skip to main content
Log in

Channel and Error Modeling for Wireless Body Area Networks

  • Published:
Mobile Networks and Applications Aims and scope Submit manuscript

Abstract

Wireless Body Area Networks (WBANs) have been developed as the human-body monitoring systems to predict, diagnose, and treat diseases. Since the signal transmission in WBANs takes place in or around the human body the channel fading significantly affects packet error rate and overal network performance. In this work, we discuss the channel models and error performance formalization for WBANs. In the first phase of this work, we study channel fading models for WBANs. In the second phase, we survey the models which calculate the error performance metrics in WBANs. We select most appropriate error models to design and develop the error performance evaluation models for IEEE 802.15.6-based WBANs and show how to integrate them with the error model in Medium Access Control (MAC). We then discuss integrated PHY and MAC error performance in WBANs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Wireless Body Area Networks Standard (2012) IEEE Std, 802.15.6

  2. Taparugssanagorn A, Rabbachin A, Hmlinen M, Saloranta J, Iinatti J (2008) A review of channel modelling for wireless body area network in wireless medical communications. In: Proceedings IEEE WPMC, Lapland

  3. Farag EN, Elmasry MI (1999) Mixed signal VLSI wireless design circuits and systems, Springer US, ch. Digital modulation schemes

  4. Nechayev YI, Hall P, Khan I, Constantinou CC (2010) Wireless channels and antennas for body-area networks. In: Proceedings IEEE WONS, Kranjska Gora, Slovenia, pp 137–144

  5. Khan I, Hall PS, Serra AA, Guraliuc AR, Nepa P (2009) Diversity performance analysis for on-body communication channels at 2.45 GHz. IEEE Trans Antennas Propag 57:956–963

    Article  Google Scholar 

  6. Molisch AF (2010) Wireless communications. Wiley, The Atrium, Southern Gate, Chichester

    Google Scholar 

  7. Bai H, Atiquzzaman M (2003) Error modelling schemes for fading channels in wireless communications: a survey. IEEE Commun Surv Tutorials 5:2–9

    Article  Google Scholar 

  8. Eng T, Kong N, Milstein LB (1996) Comparison of diversity combining techniques for rayleigh-fading channels. IEEE Trans Commun 44:1117–1129

    Article  Google Scholar 

  9. Win MZ, Beaulieu NC, Shepp LA, Logan BF, Winters JHJ (2003) On the SNR penalty of MPSK with hybrid selection/maximal ratio combining over i.i.d. rayleigh fading channels. IEEE Trans Commun 51:1012–1023

    Article  Google Scholar 

  10. Simon MK, Alouini M (1998) A unified approach to the performance analysis of digital communication over generalized fading channels. Proc IEEE 86:1860–1877

    Article  Google Scholar 

  11. Shayesteh MG (2011) Exact symbol and bit error probabilities of linearly modulated signals with maximum ratio combining diversity in frequency nonselective rician and rayleigh fading channels. IET Commun 5:12–26

    Article  MathSciNet  MATH  Google Scholar 

  12. Cotton SL, Scanlon WG (2009) An experimental investigation into the influence of user state and environment on fading characteristics in wireless body area networks at 2.45 GHz. IEEE Trans Wirel Commun 8:6–12

    Article  Google Scholar 

  13. Nechayev YI, Hall PS, Hu ZH (2010) Characterisation of narrowband communication channels on the human body at 2.45 GHz. IEEE Microwaves Antennas Propag 4:722–732

    Article  Google Scholar 

  14. Khan I, Nechayev YI, Hall PS (2010) On-body diversity channel characterization. IEEE Trans Antennas Propag 58:573–580

    Article  Google Scholar 

  15. Hu ZH, Nechayev YI, Hall PS, Constantinou CC, Yang H (2007) Measurements and statistical analysis of on-body channel fading at 2.45 GHz. IEEE Antennas Wirel Propag Lett 6:612–615

    Article  Google Scholar 

  16. Nechayev YI, Hu ZH, Hall PS (2009) Short-term and long-term fading of on-body transmission channels at 2.45 GHz. In: Proceedings IEEE LAPC, Birmingham, pp 657–660

  17. Cotton SL, Scanlon WG (2007) Measurements and statistical analysis of on-body channel fading at 2.45 GHz. IEEE Antennas Wireless Propagation Letters, 6:51–55

    Article  Google Scholar 

  18. Cotton SL, Scanlon WG (2006) A statistical analysis of indoor multipath fading for a narrowband wireless body area network. In: Proceedings IEEE PIMRC, Helsinki, pp 1–5

  19. Tjhung TT, Loo C, Secord NP (1992) BER performance of DQPSK in slow rician fading. IEEE Electron Lett 28:1763–1765

    Article  Google Scholar 

  20. Tanda M (1993) Bit error rate of dqpsk signals in slow nakagami fading. IEEE Electron Lett 29:431–432

    Article  Google Scholar 

  21. Tellambura C, Bhargava VK (1994) Unified error analysis of DQPSK in fading channels. IEEE Electron Lett 30:2110–2111

    Article  Google Scholar 

  22. Weng JF, Leung SH (1997) Analysis of DPSK with equal gain combining in nakagami fading channels. IEEE Electron Lett 33:654–656

    Article  Google Scholar 

  23. Patenaude F, Lodge JH, Chouinard JY (1997) Error probability expressions for noncoherent diversity in nakagami fading channels. In: Proceedings IEEE VTC, Phoenix, pp 1484–1487

  24. Simon MK, Alouini MS (2005) Digital communications over fading channel. Wiley, New Jersey

    Google Scholar 

  25. Bevan DD, Ermolayev VT, Flaksman AG (2001) Coherent multichannel reception of binary modulated signals with dependent rician fading. IEE Proc Commun 148:105–111

    Article  Google Scholar 

  26. Sun J, Reed IS (2003) Linear diversity analysis for M-PSK in rician fading channels. IEEE Trans Commun 51:1749–1753

    Article  Google Scholar 

  27. Cao L, Beaulieu NC (2005) Closed-form BER results for MRC diversity with channel estimation errors in rician fading channels. IEEE Trans Wirel Commun 4:1440–1447

    Article  Google Scholar 

  28. Proakis JG, Salehi M (2008) Digital communications, 5th edn. McGraw-Hill, Prentice-Hall

    Google Scholar 

  29. Shayesteh MG, Aghamohammadi A (1995) On the error probability of linearly modulated signals on the frequency flat rician, rayleigh, and AWGN channels. IEEE Trans Commun 43:1454–1466

    Article  Google Scholar 

  30. Chiani M (1997) Analytical distribution of linearly modulated cochannel interferers. IEEE Trans Commun 45:73–79

    Article  Google Scholar 

  31. Chiani M (1995) Bandwidth efficient QPSK in cochannel interference and fading. IEEE Trans Commun 43:2464–2474

    Article  Google Scholar 

  32. Hamdi KA, Pap L (2007) Exact BER analysis of binary and quaternary PSK with generalized selection diversity in cochannel interference. IEEE Trans Veh Technol 56:1849–1856

    Article  Google Scholar 

  33. Aalo VA, Jingjun Z (1999) On the effect of cochannel interference on average error rates in nakagami-fading channels. IEEE Commun Lett 3:136–138

    Article  Google Scholar 

  34. Hamdi KA (2002) Exact probability of error of BPSK communication links subjected to asynchronous interference in rayleigh fading environment. IEEE Trans Commun 50:1577–1579

    Article  Google Scholar 

  35. Ma Y, Lim TJ, Pasupathy S (2002) Error probability for coherent and differential PSK over arbitrary rician fading channels with multiple cochannel interferers. IEEE Trans Commun 50:429–441

    Article  Google Scholar 

  36. Sivanesan K, Beaulieu NC (2004) Exact BER analyses of nakagami/nakagami CCI BPSK and nakagami/rayleigh CCI QPSK systems in slow fading. IEEE Commun Lett 8:45–47

    Article  Google Scholar 

  37. Gillbert EN (1960) Capacity of a bursty-noise channel. Bell Syst Technol J 39:1253–1265

    Article  Google Scholar 

  38. Elliott EO (1963) Estimates of error rates for codes on bursty noise channels. Bell Syst Technol J 42:1977–1997

    Article  Google Scholar 

  39. Sadeghi P, Kennedy RA, Rapajic PB, Shams R (2008) Finite-state markov modelling of fading channels. IEEE Signal Proc Mag 25:57–80

    Article  Google Scholar 

  40. Vucetic B (1991) An adaptive coding scheme for time-varying channels. IEEE Trans Commun 39:653–663

    Article  Google Scholar 

  41. Wang H, Moayeri N (1995) Finite-state markov channel- a useful model for radio communication channels. IEEE Trans Veh Technol 44:163–171

    Article  Google Scholar 

  42. Chockalingam A, Zorzi M, Milstein L, Venkataram P (1998) Performance of a wireless access protocol on correlated rayleigh-fading channels with capture. IEEE Trans Commun 46:644–655

    Article  Google Scholar 

  43. Chu M, Goeckel D, Stark W (1999) On the design of markov models for fading channal. In: Proceedings IEEE VTC, Amsterdam, pp 2372–2376

  44. Babich F, Kelly O, Lombardi G (2000) Generalized markov modelling for flat fading. IEEE Trans Commun 48:547–551

    Article  Google Scholar 

  45. Babich F, Kelly O, Lombardi G (1999) A context-tree based model for quantized fading. IEEE Commun Lett 3:46–48

    Article  Google Scholar 

  46. Tan C, Beaulieu N (2000) On first-order markov modelling for the rayleigh fading channel. IEEE Trans Commun 48:2032–2040

    Article  Google Scholar 

  47. Karmokar A, Djonin D, Bhargava V (2006) Optimal and suboptimal packet scheduling over correlated time varying flat fading channels. IEEE Trans Wirel Commun 5:446–456

    Article  Google Scholar 

  48. Karmokar A, Djonin D, Bhargava V (2006) POMDP-based coding rate adaptation for type-i hybrid ARQ systems over fading channels with memory. IEEE Trans Wirel Commun 5:3512–3523

    Article  Google Scholar 

  49. Sadeghi P, Rapajic P (2005) Capacity analysis for finite-state markov mapping of flat-fading channels. IEEE Trans Commun 53:833–840

    Article  Google Scholar 

  50. Dalalah D, Cheng L, Tonkay G (2008) Modeling end-to-end wireless lossy channels: a finite-state markov approach. IEEE Trans Wirel Commun 7:1236–1243

    Article  Google Scholar 

  51. Chang MK, Lee SY, Chien CH, Kuo CH (2010) Performance analysis and modelling of single-step power control in finite state markov channel under different feedback channels. IEEE Trans Commun 58:1280–1290

    Article  Google Scholar 

  52. Pan Q, Liu S, Xu M, Jia C (2009) Finite-state markov model for the aeronautical channel. In: Proceedings IEEE WiCom, Beijing, pp 14

  53. Park JM, Hwang GU (2009) Mathematical modelling of rayleigh fading channels based on finite state markov chains. IEEE Commun Lett 13:764–766

    Article  Google Scholar 

  54. Sadeghi P, Rapajic P (2008) On information rates of time-varying fading channels modelled as finite-state markov channels. IEEE Trans Commun 56:1268–1278

    Article  Google Scholar 

  55. Babich F, Lombardi G (2000) A markov model for the mobile propagation channel. IEEE Trans Veh Technol 49:63–73

    Article  Google Scholar 

  56. Vassilaras S (2010) A cross-layer optimized adaptive modulation and coding scheme for transmission of streaming media over wireless links. Wirel Netw J 16:903–914

    Article  Google Scholar 

  57. Guan Y, Turner L (1999) Generalised FSMC model for radio channels with correlated fading. IEEE Proc Commun 146:133–137

    Article  Google Scholar 

  58. Iskander C, Mathiopoulos P (2003) Fast simulation of diversity nakagami fading channels using finite-state markov models. IEEE Proc Broadcast 49:269–277

    Article  Google Scholar 

  59. Hoang A, Motani M (2004) Buffer and channel adaptive transmission over fading channels with imperfect channel state information. In: Proceedings IEEE WCNC, Atlanta, pp 18911896

  60. Xiao J, Qiu J, Cheng S (2005) A joint adaptive packet size and modulation scheme combined with SR-ARQ over correlated fading channels. In: Proceedings IEEE WiCOM, Wuhan, pp 478483

  61. Johnston L, Krishnamurthy V (2006) Opportunistic file transfer over a fading channel: a POMDP search theory formulation with optimal threshold policies. IEEE Trans Wirel Commun 5:394–405

    Article  Google Scholar 

  62. Wang H, Mandayam NB (2005) Opportunistic file transfer over a fading channel under energy and delay constraints. IEEE Trans Commun 53:632–644

    Article  Google Scholar 

  63. Pimentel C, Falk TH, Lisboa L (2004) Finite-state markov modelling of correlated rician fading channels. IEEE Trans Veh Technol 53:1491–1501

    Article  Google Scholar 

  64. Nithya V, Bhaskar V (2011) Finite-state markov channel modelling under jointly varying amplitude and phase in time-varying flat fading channels. IET Commun 5:1237–1245

    Article  MathSciNet  MATH  Google Scholar 

  65. Wei Y, Yu FR, Song M (2010) Distributed optimal relay selection in wireless cooperative networks with finite-state markov channels. IEEE Trans Veh Technol 59:2149–2158

    Article  Google Scholar 

  66. Verticale G (2009) A closed-form expression for queuing delay in rayleigh fading channels using stochastic network calculus. In Proceedings ACM Q2SWinet, Tenerife, pp 812

  67. Li T, Collins OM (2007) A successive decoding strategy for channels with memory. IEEE Trans Inf Theory 53:628–646

    Article  MathSciNet  Google Scholar 

  68. Zhang R, Cai L (2010) Joint AMC and packet fragmentation for error control over fading channels. IEEE Trans Veh Technol 59:3070–3080

    Article  Google Scholar 

  69. Al-Lawati H, Alajaji F, Pimentel C (2010) On symbol versus bit interleaving for block-coded binary markov channels. IEEE Trans Veh Technol 59:2582–2588

    Article  Google Scholar 

  70. Zhong L, Alajaji F, Takahara G (2008) A model for correlated rician fading channels based on a finite queue. IEEE Trans Veh Technol 57:79–89

    Article  Google Scholar 

  71. Kumwilaisak W, Kuo CCJ, Wu D (2008) Fading channel modelling via variable-length markov chain technique. IEEE Trans Veh Technol 57:1338–1358

    Article  Google Scholar 

  72. Kumwilaisak W, Kuo CCJ, Wu D (2008) Joint rate and power adaptation for type-i hybrid ARQ systems over correlated fading channels under different buffer-cost constraints. IEEE Trans Veh Technol 57:421–435

    Article  Google Scholar 

  73. Hoang AT, Motani M (2008) Cross-layer adaptive transmission: optimal strategies in fading channels. IEEE Trans Commun 56:799–807

    Article  Google Scholar 

  74. Xiao J, Zou S, Qiu J, Cheng S (2008) A cross-layer adaptive transmission scheme combined with SR-ARQ over correlated fading channels. J Comput Electr Eng 34:324–337

    Article  MATH  Google Scholar 

  75. Karmokar AK, Bhargava VK (2009) Performance of cross-layer optimal adaptive transmission techniques over diversity nakagami-m fading channels. IEEE Trans Commun 57:3640–3652

    Article  Google Scholar 

  76. Rashwand S, Misic J, Khazaei H (2011) Performance analysis of IEEE 802.15.6 under saturation condition and error-prone channel. In: Proceedings the IEEE wireless communications and networking conference (WCNC’11), Cancun, pp 475–480

  77. Rashwand S, Misic J, Khazaei H (2011) IEEE 802.15.6 under saturation: some problems to be expected. J Commun Netw 13:142–149

    Article  Google Scholar 

  78. Rashwand S, Misic J, Misic VB (2012) MAC performance modeling of IEEE 802.15.6-based WBANs over rician-faded channels. In: Proceedings the IEEE international conference on communications (ICC’12), Ottawa, pp 5462–5467

  79. Rashwand S, Misic J (2012) Effects of access phases lengths on performance of IEEE 802.15.6 CSMA/CA mechanism. J Comput Netw (COMNET) 56:2832–2846

    Article  Google Scholar 

  80. Rashwand S, Misic J (2011) Performance evaluation of IEEE 802.15.6 under non-saturation condition. In: Proceedings the IEEE global 967 telecommunications conference (Globecom11), Houston, pp 1–6

  81. Rashwand S, Misic J, Misic V (2013) Analysis of CSMA mechanism of IEEE 802.15.6. IEEE Transactions on Parallel and Distributed Systems. Under Revision

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jelena Mišić.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rashwand, S., Mišić, J. Channel and Error Modeling for Wireless Body Area Networks. Mobile Netw Appl 19, 276–286 (2014). https://doi.org/10.1007/s11036-013-0449-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11036-013-0449-8

Keywords

Navigation