Skip to main content
Log in

Quantum Secure Communication Network Protocol with Entangled Photons for Mobile Communications

  • Published:
Mobile Networks and Applications Aims and scope Submit manuscript

Abstract

In this paper, we propose a communication protocol called Controlled Bidirectional Quantum Secret Direct Communication (CBQSDC) for mobile networks. In mobile networks, telecom companies assist the agent ensuring both sides could receive the other’s secret messages in the transmission by quantum theory simultaneously. This protocol is based on n-particle GHZ states (Greenberger-Horne-Zeilinger-states) which are transformed to Einstein-Podolsky-Rosen (EPR) pairs by entanglement swapping. GHZ states are used to carry both sides’ messages and entanglement swapping could reduce the number of transmission, so we could decrease the probability of eavesdropping. If any eavesdropper tries to steal dealer’s messages, the lawful participants will perceive it and abort their transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Chang L-P, Wu T-C, Hsu C-L, Lu C-F (2010) Two level authenticated group key agreement protocol with privacy-preservation for resource-limited mobile devices. J Internet Technol 11(4):519–528

    Google Scholar 

  2. del Álamo JM, Fernández AM, Trapero R, Yelmo JC, Monjas MA (2011) A privacy-considerate framework for identity management in mobile services. Mob Netw Appl 15(4):446–459

    Article  Google Scholar 

  3. Chou YH, Chen C-Y, Chao H-C, Park JH, Fan R-K (2011) Quantum entanglement and non-locality based secure computation for future communication. IET Inf Secur 5(1):69–79

    Article  Google Scholar 

  4. Bennett CH, Brassard G (1984) Quantum cryptography: Public key distribution and coin tossing. Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing, p 175

  5. Ekert AK (1991) Quantum cryptography based on Bell’s theorem. Phys Rev Lett 67:661–663

    Article  MathSciNet  MATH  Google Scholar 

  6. Bennett CH, Brassard G, Mermin ND (1992) Quantum cryptography without Bell’s theorem. Phys Rev Lett 68:557–559

    Article  MathSciNet  MATH  Google Scholar 

  7. Xue P, Li CF, Guo GC (2002) Conditional efficient multiuser quantum cryptography network. Phys Rev A 65:022317

    Article  Google Scholar 

  8. Acin A, Gisin N, Scarani V (2004) Coherent-pulse implementations of quantum cryptography protocols resistant to photon-number-splitting attacks. Phys Rev A 69:012309

    Article  Google Scholar 

  9. Vernam GS (1926) Cipher printing telegraph systems for secret wire and radio telegraphic communications. American Institute of Electrical Engineers, pp 295–301

  10. Boström K, Felbinger T (2002) Deterministic secure direct communication using entanglement. Phys Rev Lett 89:187902

    Article  Google Scholar 

  11. Deng F, Long G, Liu X (2003) Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys Rev A 68:042317

    Article  Google Scholar 

  12. Deng F, Long G (2004) Secure direct communication with a quantum one-time pad. Phys Rev A 69:052319

    Article  Google Scholar 

  13. Lucamarini M, Mancini S (2005) Secure deterministic communication without entanglement. Phys Rev Lett 94:140501

    Article  Google Scholar 

  14. Beige A, Englert BG, Kurtsiefer C, Weinfurter H (2002) Secure communication with a publicly known key. Acta Phys Pol, A 101:357–368

    Google Scholar 

  15. Chou YH, Chen CY, Fan RK, Chao HC, Lin FJ (2012) Enhanced multiparty quantum secret sharing of classical messages by using entanglement swapping. IET Inf Secur 6(2):84–92

    Article  Google Scholar 

  16. Deng FG, Zhou HY, Long GL (2005) Bidirectional quantum secret sharing and secret splitting with polarized single photons. Phys Lett A 337:329–334

    Article  MATH  Google Scholar 

  17. Chen CY, Chou YH, Chao HC (2012) Distributed quantum entanglement sharing model for high-performance real-time system. Soft Comput 16:427–435

    Article  Google Scholar 

  18. Long GL, Liu XS (2002) Theoretically efficient high-capacity quantum-key-distribution scheme. Phys Rev A 65:032302

    Article  Google Scholar 

  19. Shimizu K, Imoto N (1999) Communication channels secured from eavesdropping via transmission of photonic Bell states. Phys Rev A 60:157–166

    Article  Google Scholar 

  20. Deng FG, Li CY, Zhou P, Zhou HY (2006) Quantum secure direct communication network with Einstein–Podolsky–Rosen pairs. Phys Lett A 359:359–365

    Article  MathSciNet  MATH  Google Scholar 

  21. Li XH, Zhou P, Liang YJ, Li CY, Zhou HY, Deng FG (2006) Quantum secure direct communication network with two-step protocol. Chin Phys Lett 23:1080–1083

    Article  Google Scholar 

  22. Wang C, Deng FG, Li YS, Liu XS, Long GL (2005) Quantum secure direct communication with high-dimension quantum superdense coding. Phys Rev A 71:044305

    Article  Google Scholar 

  23. Wang C, Deng FG, Long GL (2005) Multi-step quantum secure direct communication using multi-particle Green-Horne-Zeilinger state. Opt Commun 253:15–20

    Article  Google Scholar 

  24. Zhou P, Li XH, Liang YJ, Deng FG, Zhou HY (2007) Multiparty quantum secret sharing with pure entangled states and decoy photons. Phys A Stat Mech Appl 381:164–169

    Article  MathSciNet  Google Scholar 

  25. Cai QY, Li BW (2004) Improving the capacity of the Boström-Felbinger protocol. Phys Rev A 69:054301

    Article  Google Scholar 

  26. Cai QY, Li BW (2004) Deterministic secure communication without using entanglement. Chin Phys Lett 21:601–603

    Article  Google Scholar 

  27. Wang J, Zhang Q, Tang CJ (2006) Quantum secure direct communication based on order rearrangement of single photons. Phys Lett A 358:256–258

    Article  MATH  Google Scholar 

  28. Cai QY (2003) The “Ping-Pong” protocol can be attacked without eavesdropping. Phys Rev Lett 91:109801

    Article  Google Scholar 

  29. Cai QY (2006) Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys Lett A 351:23–25

    Article  MATH  Google Scholar 

  30. Shi GF, Xi XQ, Tian XL, Yue RH (2009) Bidirectional quantum secure communication based on a shared private Bell state. Opt Commun 282:2460–2463

    Article  Google Scholar 

  31. Gao G, Wang LP (2010) A protocol for bidirectional quantum secure communication based on Genuine four-particle entangled states. Commun Theor Phys 54:447–451

    Article  MATH  Google Scholar 

  32. Shi GF (2010) Bidirectional quantum secure communication scheme based on Bell states and auxiliary particles. Opt Commun 283:5275–5278

    Article  Google Scholar 

  33. Shi GF, Xi XQ, Hu ML, Yue RH (2010) Quantum secure dialogue by using single photons. Opt Commun 283:1984–1986

    Article  Google Scholar 

  34. Gao G (2010) Two quantum dialogue protocols without information leakage. Opt Commun 283:2288–2293

    Article  Google Scholar 

  35. Man ZX, Xia YJ (2006) Controlled bidirectional quantum direct communication by using a GHZ state. Chin Phys Lett 23:1680–1682

    Article  Google Scholar 

  36. Dong L, Xiu XM, Gao YJ, Chi F (2008) A controlled quantum dialogue protocol in the network using entanglement swapping. Opt Commun 281:6135–6138

    Article  Google Scholar 

  37. Kao SH, Tsai CW, Hwang TL (2011) Enhanced multiparty controlled QSDC using GHZ state. Commun Theor Phys 55:1007

    Article  MATH  Google Scholar 

  38. Wang J, Zhang Q, Tang CJ (2006) Multiparty controlled quantum secure direct communication using Greenber-Horne-Zeilinger state. Opt Commun 266:732–737

    Article  Google Scholar 

  39. Gao F, Lin S, Wen QY, Zhu FC (2008) A special eavesdropping on one-sender versus N-receiver QSDC protocol. Chin Phys Lett 25:1561–1563

    Article  Google Scholar 

  40. Gao F, Qin SJ, Wen QY, Zhu FC (2010) Cryptanalysis of multiparty controlled quantum secure direct communication using Greenberger-Horne-Zeilinger state. Opt Commun 283:192–195

    Article  Google Scholar 

Download references

Acknowledgment

This research was funded by the National Science Council of the R.O.C. under grants NSC 100-2221-E-260-038 and NSC 101-2221-E-260-033.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han-Chieh Chao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chou, YH., Zeng, GJ., Lin, FJ. et al. Quantum Secure Communication Network Protocol with Entangled Photons for Mobile Communications. Mobile Netw Appl 19, 121–130 (2014). https://doi.org/10.1007/s11036-013-0454-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11036-013-0454-y

Keywords

Navigation