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Abstract We propose a logical framework for modelling
and verifying context-aware multi-agent systems. We extend
CTL∗ with belief and communication modalities, and the
resulting logic LOCRS allows us to describe a set of rule-
based reasoning agents with bounds on time, memory and
communication. The set of rules which are used to model a
desired system is derived from OWL 2 RL ontologies. We
provide an axiomatization of the logic and prove it is sound
and complete. We show how Maude rewriting system can be
used to encode and verify interesting properties of LOCRS
models using existing model checking techniques.

Keywords Modal logic · Context-aware · Multi-agent
systems · Ontology ·Model checking.

1 Introduction

The vision of pervasive computing technology intends to
provide invisible computing environments so that a user can
utilize services at any time and everywhere [28]. Context-
awareness is a key concept in pervasive computing. In context-
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aware pervasive computing every user may have several com-
puting devices, where information can be collected by using
tiny resource-bounded devices, including e.g., PDAs, smart
phones, and wireless sensor nodes [26]. These systems inter-
act with human users, they often exhibit complex adaptive
behaviours, they are highly decentralised and can naturally
be implemented as multi-agent systems. An agent is a piece
of software that requires to be reactive, pro-active, and that is
capable of autonomous action in its environment to meet its
design objectives. An agent is autonomous if it encapsulates
its behaviour and internal state. This means that an agent it-
self has control over its own actions and behaviour. When a
system is composed of multiple interacting agents it is called
a multi-agent system (MAS) [29]. In a MAS, agents are typi-
cally communicate via message passing and co-operate with
other agents in order to achieve common goals. In many cir-
cumstances building centralized systems are quite imprac-
tical or undesirable such as pervasive systems, where MAS
technology appears to be a primary choice in producing dis-
tributed information systems. In this paper, we address soft-
ware reasoning agents which are capable of reasoning about
their behaviour and interactions, however, an agent could
be for example a robot. That is our agents are primarily
viewed as doing some kind of inference over a knowledge
base (KB), e.g., using forward chaining rules.

There has been considerable work in pervasive comput-
ing literature focusing on various domains including health
care (see e.g., [8,19,2,12]). Much of this work concen-
trate on representing and reasoning about contexts. How-
ever, unlike many other context-aware application systems,
in many cases health care systems are considered as safety
critical systems [7]. In such systems, not meeting design ob-
jectives may result in tremendous loss including possibly
human lives. For example, in a non-time critical environ-
ment, where small delays due to response time are not an
issue, a system may respond to queries without any concern
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or consideration of the time required for reasoning. How-
ever, in many situations the time taken to do the reasoning
is of critical importance. Other issues include space require-
ments for reasoning and the number of messages that are
exchanged between tiny resource-bounded devices in order
to achieve their goals. This is because memory space of such
a device is relatively small and its life time is inversely pro-
portional to the number of messages it exchanges. System-
atic, formal approaches to their specification and verification
can allow addressing these problems. In this research work,
intended systems will not only be able to facilitate knowing
who is encountering what problem when and where, but also
if a system finds that someone encountering some problem
in a particular place at a particular moment then whether
assistance seeker will receive favoured services or not, if re-
ceives then what computational (time and space) and com-
munication resources must be devoted to its solution by each
agent.

In the literature, various logical frameworks have been
developed for modelling and verification of multi-agent sys-
tems (a brief state-of-the-art survey can be found in [22,
21]). However, such frameworks may not be very suitable
to model context-aware applications. This is because, most
of those existing frameworks consider propositional logic
as a simple knowledge representation language which is of-
ten not suitable for modelling real life complex systems.
For example, propositional logic cannot directly talk about
properties of individuals or relations between individuals.
Much research in pervasive computing has been focused on
incorporation of context-awareness features into pervasive
applications by adapting the semantic web technology (see
e.g.,[27,12,23]), where description logic (DL)-based ontol-
ogy languages are often used for context representation and
reasoning. DL is a decidable fragment of first order logic
(FOL). In [23], it has been shown how context-aware sys-
tems can be modelled as resource-bounded rule-based sys-
tems using ontologies. In that paper, the resources required
by the agents to solve a given problem were considered the
time and communication bandwidth. But not the space re-
quirements for reasoning. In this paper, we propose a log-
ical framework based on the earlier work of Alechina and
colleagues [4,5,3], and the resulting LOCRS logic allows
us to describe a set of ontology-driven rule-based reasoning
agents with bounds on time, memory, and communication.
In addition to the incorporation of space (memory) require-
ments for reasoning in [4], LOCRS also uses first order Horn
clause rules derived from OWL 2 RL ontologies. We prove
that the logic is sound and complete. While the frameworks
presented in [4,5] provide a useful basis for experimenta-
tion with both the logical representation and verification of
heterogeneous agents, it has become clear that a more ex-
pressive logical language is required if these frameworks are
to be used for real world context-aware agents. Though the

logic developed by [3] is based on FOL, memory bounds
have not been imposed in that framework. The proposed
framework allows us to determine how much time (mea-
sured as rule-firing cycles) are required to generate certain
contexts, how many messages must be exchanged among
agents, and how much space (memory) is required for an
agent to do the reasoning. For verification, we show how we
can encode a LOCRS model using the Maude LTL model
checker [11] and verify its certain interesting resource-bounded
properties.

The remainder of the paper is organized as follows. In
section 2, we discuss how contexts are represented using
OWL 2 RL and SWRL. In section 3, we describe our model
of communicating multi-agent context-aware systems. In sec-
tion 4, we develop logic LOCRS , in section 5 we present an
example system and experimental results, and conclude in
section 6.

2 Semantic context model

We view context is any information that can be used to iden-
tify the status of an entity. An entity can be a person, a
place, a physical or a computing object. This context is rel-
evant to a user and application, and reflects the relation-
ship among themselves [10]. A context can be formally de-
fined as a (subject, predicate, object) triple that states a fact
about the subject where — the subject is an entity in the en-
vironment, the object is a value or another entity, and the
predicate is a relationship between the subject and object.
According to [10], “if a piece of information can be used
to characterize the situation of a participant in an interac-
tion, then that information is context”. For example, we can
represent contexts ”Mary has Systolic Blood Pressure 120”
as (Mary, hasSystolicBloodPressure, 120) and ”Mary has a
carer named Fiona” as (Mary, hasCarer, Fiona). Here, the
caregiver of a patient is dynamically identified based on the
care status of the caregiver.

Over the last decade, significant research attention has
been devoted to explore the various relationships between
ontology and knowledge representation. In artificial intelli-
gence (AI) the term ontology has been used to specify a con-
ceptualization in the context of knowledge sharing. In [14],
Gruber defines conceptualization as an abstract, simplified
view of the environment we want to represent. More for-
mally, an ontology can represent a model of a domain of
discourse that introduces a vocabulary to specify the con-
cepts relevant to the domain and their relationships. That is,
an ontology can be used to represent knowledge of a do-
main which gives a clear and coherent view of that domain,
and it can be seen as playing a key role in describing the se-
mantics of the data. Suppose we want to describe a domain
named smart home; we need to consider important parts
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including for example, possible locations, furniture equip-
ment, household equipment, technical equipment, and phys-
ical devices with which people can interact. By observing
the scenario, some questions can be raised into the system
designer’s mind, for example, who are the dwellers? how
many rooms are there in the home? what is the location of
TV? which devices are located at what places and how they
interact with each other? and so on. Based on these kind of
questions we can identify the major concepts those can be
used in building the ontology. For instance, ”bedroom is a
room that is part of the home” is a concept that has terms
with relevant semantics, this concept can be formalized us-
ing first order logic as follows:

∀x · [Bedroom(x)→ Room(x) ∧ ∃y · [isPartOf (x, y)

∧Home(x)]]

The Web Ontology Language OWL built on RDF and
RDFS is a semantic markup language for ontologies that
provides a formal syntax and semantics for them [9]. OWL
ontology is essentially a set of axioms and consists of classes,
individuals and properties. In the aforementioned (subject,
predicate, object) triplet, subjects and objects are denoted
by classes (and subclasses), while predicates are typically
denoted by properties. Thus contexts can be efficiently mod-
elled using ontologies. There are two types of properties in
OWL ontologies, object properties and data properties. Ob-
ject properties are binary relations which link an individual
to an individual, whereas data properties link an individual
to a typed data. Description logic based OWL is a good can-
didate for defining ontologies where automated reasoning is
required. A reasoner can infer implicit facts contained in the
ontology. As an example, a simple ontology about home is
represented in DL 1-3.
Bedroom v Room u ∃isPartOf ·Home (1)

Bedroom u ∃hasDoor ·Door (2)

Dweller(Mary) (3)

The first two axioms define the concepts ”Bedroom is a
room that is part of the home” and ”Bedroom has a door”,
respectively, whereas the third axiom asserts the fact that
”Mary is a dweller’. A reasoner can infer that ”Room has a
door” which is implicit in the ontology.

For context modelling we use OWL 2 RL, a profile of
the new standardization OWL 2, and based on pD∗ [17] and
the description logic program (DLP) [13]. We choose OWL
2 RL because it is more expressive than the RDFS and suit-
able for the design and development of rule-based systems.
An OWL 2 RL ontology can be translated into a set of Horn
clause rules based on [13]. Furthermore, we express more
complex rule-based concepts using SWRL [16] which al-
low us to write rules using OWL concepts. In our frame-
work, a context-aware system composed of a set of rule-
based agents, and firing of rules that infer new facts may de-

termine context changes and representing overall behaviour
of the system.

The following subsections show how we model contexts
for smart spaces and perform context-awareness reasoning.

2.1 Ontology-design

There are several different approaches in designing ontolo-
gies for a domain of interest [25]. One way to do this is to
use bottom-up approach, in which ontology for smaller parts
are constructed first, then using high-level abstract classes
the desired ontology is developed. That is, bottom-up ap-
proach starts with the leaves of the hierarchy that defines the
most specific classes first, and subsequently groups these
classes into more general concepts. For example, we can
start by defining classes for Nurse and Physician, then cre-
ate a common superclass for these two classes as Formal in
turn is a subclass of CareGiver and so on.

In contrast to the bottom-up approach, a top-down ap-
proach designs the upper classes first and then develops the
small parts of the hierarchy. That is, top-down approach starts
with defining the most general concepts in the domain first,
and subsequently specializes the concepts down to the hier-
archy.

In designing our smart space ontology, we adopt a top-
level shared conceptualization and on top of which lower-
level (domain specific) ontologies are built. The top-level
ontology defines the high-level concepts that are common
among different context-aware entities, independently from
the application domain. Whereas the domain ontology refers
to a specific domain defining the details of general concepts
and their relationships. We use top-level concepts such as
Location, Person, Device, Service, Activity, Time, and Med-
ication. These conceptual entities specialize different con-
cepts depending on the context sub-domain. For example,
the Person context class defines the general feature of a per-
son. In our home health-care modelling domain, it may be
divided into Patient and CareGiver subclasses. The Care-
Giver class is further divided into Formal and Informal sub-
classes and so on. Our ontology-based context modelling
provides physical representation of smart home (including
its doors, windows, various locations, and so on), objects
available in the smart home (including sensors and elec-
tric appliances), and users and their various activities and
characteristics. It also provides (local and remote) services
including operating electrical appliances, medical consulta-
tion, emergency response etc. A fragment of the ontology is
depicted in Figure 1.

For brevity, we omit a detailed description of all the con-
cepts and their relationships used to design the ontology for
smart space considering both home and health centre envi-
ronments. However, some of the classes of the patient con-
text ontology are shown in Figure 2. The Person context
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Fig. 1 A partial view of home environment and context ontology

Fig. 2 A partial view of patient context ontology

(and hence Patient context) has person profile information
such as, e.g., Name, Age, Height, and Weight, and the Pa-
tient context has PhysiologicalData context. For the design
of context ontologies we use OWL 2 RL language and the
Protégé ontology editor [20].

Note that there is no unique way to model a domain of
discourse and there are always viable alternatives, however,
a good way to think about modelling a domain depends on
the application scenario one has in mind and its possible
extensions that will be anticipated. Ontologies try to model
real world scenario and therefore the concepts in the desired
ontology must reflect this reality. It is an iterative process
and many standard terms for health care domain already
exist in the literature, for example, to model our domain a

set of standard terms are obtained from SNOMED-CT [1],
ICNP [15].

Fig. 3 Example SWRL rules and individualised patient ontology

The combination of upper and domain ontologies de-
scribed above, however only capture the static behaviour of
a context-aware system. The context-aware systems mod-
elled in our approach define their dynamic behaviour using
Semantic Web Rule Language (SWRL). SWRL allows user
to write rules using OWL concepts and its combination with
OWL 2 RL provide more expressive language having greater
deductive reasoning capabilities than OWL 2 RL alone. We
can express more complex rule-based concepts using SWRL
that cannot be modelled using OWL 2 RL. Some exam-
ple rules are shown in Figure 3 (a). Thus our approach of
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ontological representation of context-aware systems gives a
clean ontology design based on the distinction between the
static information represented using OWL 2 RL and the dy-
namic aspects of the systems go into the SWRL rules.

2.2 Context-aware reasoning

We use ontology-based reasoning to determine concept sat-
isfiability, subsumption relations, consistency and instance
checking. That is, ontology-based reasoning infers implicit
contexts from explicit contexts based on class relationships
and property characteristics. For example, in our ontology,
hasCarer is an inverse property of takesCareOf. From user
defined explicit context hasCarer(Mary, Fiona) which states
that ”Mary has a carer named Fiona”, ontology-based rea-
soning can infer a new context takesCareOf(Fiona, Mary)
which states that ”Fiona takes care of a patient named Mary”
based on the semantics owl:inverseOf. In Figure 3 (b), an in-
stance of the patient domain ontology can be, for example,
”Mary” has been shown. In this figure, we asserted some
low-level contexts for a patient including hasAge(Mary,65),
hasPatientID(Mary,P0001) etc. It also includes some inferred
contexts derived from context-reasoning using the DL rea-
soner Pellet.

As we have mentioned before, OWL DL is strictly lim-
ited to certain tree structure-like axioms and cannot be used
to express arbitrary axioms, for example the relation be-
tween individuals with which an individual has relations can-
not be expressed using OWL DL. The SWRL rules can re-
move such restrictions. Furthermore, low-level contexts can
be transformed into meaningful information in terms of high-
level contexts, where a set of suitable rules can exploit the
real meaning of some raw values of context properties. Us-
ing SWRL rules we can have a flexible reasoning mech-
anism that will allow us inferring new contexts based on
user defined rules. Thus, whenever certain changes are de-
tected in its context, the system can be configured to change
its behavior. Our aim is to build a context-aware system
through distributed rule-based agents. Therefore, we trans-
late OWL 2 RL ontology into a set of Horn clause rules, and
the combination of these translated rules and the user de-
fined SWRL rules (those are already in the Horn clause for-
mat) provide foundational knowledge to design the desired
distributed rule-based agents. Moreover, user annotated Horn
clause rules will enable reasoning with users’ needs.

2.3 Translation of ontologies into rules

Since OWL 2 RL is based on DLP, the set of axioms and
facts of an OWL 2 RL ontology can be translated to Horn
clause rules [13]. In order to design an ontology-driven rule-
based system, first we use the DLP framework [13] to trans-

late an ontology to a set of Horn clause rules. In OWL 2 RL,
facts are described using ClassAssertion and ObjectProp-
ertyAssertion/DataPropertyAssertion which correspond to DL
axioms of the form a : C and 〈a, b〉 : P , respectively, where
a and b are individuals, C is a class, and P is an object/data
property. Note that these facts are already in the Horn clause
rule format with empty bodies.

The syntax of OWL 2 RL is asymmetric, i.e., the syntac-
tic restrictions allowed for subclass expressions differ from
those allowed for superclass expressions. For instance, an
existential quantification to a class expression (ObjectSomeVal-
uesFrom) is allowed only in subclass expressions whereas
universal quantification to a class expression (ObjectAllVal-
uesFrom) is allowed only in superclass expressions. These
restrictions facilitate the translation of OWL 2 RL axioms
into Horn clause rules based on the DLP framework. Trans-
lations of some of the OWL 2 RL axioms and facts into
rules are given in Table 1. In the second column, complete
DL statements are given which are constructed by the corre-
sponding OWL 2 RL axioms and facts to illustrate the trans-
lation. For example, ObjectIntersectionOf (u) is represented
by the statement C1 v D1 uD2. The translation of SWRL
rules is straightforward because they are already in the Horn
clause rule format.

3 Context-aware systems as MASs

We model context-aware systems as multi-agent systems and
rely on decentralised reasoning services and distribute con-
text description to the agents (i.e., unlike many other agent-
based context-aware systems we do not store context de-
scription managed by a central middleware). In our model
a multi-agent context-aware system consists of nAg (≥ 1)
individual agents Ag = {1, 2, . . . , nAg}. Each agent i ∈
Ag has a program, consisting of Horn clause rules of the
form P1, P2, . . . , Pn → P (derived from OWL 2 RL and
SWRL), and a working memory, which contains ground atomic
facts (contexts) taken from ABox representing the initial
state of the system. In the rule, the antecedentsP1, P2, . . . , Pn
and the consequentP are context information. The antecedents
of the rule form a complex context which is a conjunction of
n contexts. In a resource-bounded system, it is quite unreal-
istic to presume that a single agent can acquire and under-
stand available contextual information and infer new con-
texts alone. Thus sharing knowledge among agents is an ef-
ficient way to build context-aware systems. In our model,
agents share a common ontology and communication mech-
anism. To model communication between agents, we as-
sume that agents have two special communication primi-
tives Ask(i, j, P ) and Tell(i, j, P ) in their language, where
i and j are agents and P is an atomic context not containing
an Ask or a Tell . Ask(i, j, P ) means ‘i asks j whether the
context P is the case’ and Tell(i, j, P ) means ‘i tells j that
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OWL 2 Axioms and Facts DL Syntax Horn clause rule
ClassAssertions a:C C(a)
PropertyAssertion 〈a, b〉 : P P (a, b)

SubClassOf C v D C(x)→ D(x)

EquivalentClasses C ≡ D C(x)→ D(x),D(x)→ C(x)

EquivalentProperties P ≡ Q Q(x, y)→ P (x, y)

P (x, y)→ Q(x, y)

ObjectInverseOf P ≡ Q− P (x, y)→ Q(y, x)

Q(y, x)→ P (x, y)

TransitiveObjectProperty P+ v P P (x, y) ∧ P (y, z)→ P (x, z)

SymmetricObjectProperty P ≡ P− P (x, y)→ P (y, x)

Object/DataUnionOf C1 t C2 v D C1(x)→ D(x), C2(x)→ D(x)

Object/DataIntersectionOf C v D1 uD2 C(x)→ D1(x),C(x)→ D2(x)

Object/DataSomeValuesFrom ∃P.C v D P (x, y) ∧ C(y)→ D(x)

Object/DataAllValuesFrom C v ∀P.D C(x) ∧ P (x, y)→ D(y)

Object/DataPropertyDomain > v ∀P−.C P (y, x)→ C(y)

Object/DataPropertyRange > v ∀P.C P (x, y)→ C(y)

Table 1 Translation of OWL 2 RL axioms and facts into Horn clause rules

context P ’ (i 6= j). The positions in which the Ask and Tell

primitives may appear in a rule depends on which agent’s
program the rule belongs to. Agent i may have an Ask or
a Tell with arguments (i, j, P ) in the consequent of a rule;
e.g., P1, P2, . . . , Pn → Ask(i, j, P ) whereas agent j may
have an Ask or a Tell with arguments (i, j, P ) in the an-
tecedent of the rule; e.g., Tell(i, j, P )→ P is a well-formed
rule (we call it trust rule) for agent j that causes it to believe i
when i informs it that context P is the case. No other occur-
rences of Ask or Tell are allowed. When a rule has either an
Ask or a Tell as its consequent, we call it a communication
rule. All other rules are known as deduction rules. These in-
clude rules with Asks and Tells in the antecedent as well as
rules containing neither an Ask nor a Tell . Note that OWL
2 is limited to unary and binary predicates and it is function-
free. Therefore, in the Protégé editor all the arguments of
Ask and Tell are represented using constant symbols and
these annotated symbols are translated appropriately when
designing the target system using the Maude specification.

4 The Logic LOCRS

A DL knowledge base (KB ) has two components: the Ter-
minology Box (TBox ) T and the Assertion Box (ABox )A.
The TBox introduces the terminology of a domain, while
the ABox contains assertions about individuals in terms of
this vocabulary. The TBox is a finite set of general concept
inclusions (GCI ) and role inclusions. A GCI is of the form
C v D where C, D are DL-concepts and a role inclusion is
of the form R v S where R, S are DL-roles. We may use
C ≡ D (concept equivalence) as an abbreviation for the two
GCI s C v D and D v C and R ≡ S (role equivalence)
as an abbreviation for R v S and S v R. The ABox is a

finite set of concept assertions in the form of C(a) and role
assertions in the form of R(a, b).

Definition 1 (Interpretation of DL-knowledge bases) An
Interpretation of a DL knowledge base is a pair I =< ∆I , .I >

where ∆I is a non-empty set (the domain of interpretation)
and .I is a function that maps every concept to a subset of
∆I , every role to a subset of ∆I ×∆I , and each individual
name to an element of the domain ∆I .

An interpretation I satisfies the concept assertion C(a),
denoted by I |= C(a), iff aI ∈ CI and it satisfies the role
assertion R(a, b), denoted by I |= R(a, b), iff (aI , bI) ∈
RI , where a and b are individuals.

We now introduce the logic LOCRS which is an exten-
sion of the logic developed by [4]. Our proposed approach is
based on the work of [13] who show that a subset of DL lan-
guages can be effectively mapped into a set of Horn clause
rules. Intuitively the set of translated rules corresponds to the
ABox joined with TBox axioms (§2.3). Let us define the
internal language of each agent in the system. Let the set of
agents be Ag = {1, 2, ...., nAg}, C = {C1, C2, . . . Cn} be a
finite set of concepts,R = {R1, R2, . . . , Rn} be a finite set
of roles, and A be a finite set of assertions. We also define
a set Q = {Ask(i, j, P ), T ell(i, j, P )}, where i, j ∈ Ag
and P ∈ C ∪ R. Note that C and R are the sets of con-
cepts and roles that appear in A. Let < = {r1, r2, . . . , rn}
be a finite set of rules of the form P1, P2, . . . , Pn → P ,
where n ≥ 0, Pi, P ∈ C ∪ R ∪ Q for all i ∈ {1, 2, . . . , n}
and Pi 6= Pj for all i 6= j. For convenience, we use the
notation ant(r) for the set of antecedents of r and cons(r)
for the consequent of r, where r ∈ <. Let g : ℘(A) →
< be a substitution function that uses a forward-chaining
strategy to instantiate the rule-base. We denote by G(<) the
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set of all the ground instances of the rules occurring in <,
which is obtained using g. Thus G(<) is finite. Let r̄ ∈
G(<) be one of the possible instances of a rule r ∈ <.
Note thatC(a),R(a, b),Ask(i, j, C(a)),Ask(i, j, R(a, b)),
Tell(i, j, C(a)), and Tell(i, j, R(a, b)) are ground facts, for
all C ∈ C, R ∈ R. The internal language L includes all the
ground facts and rules. Let us denote the set of all formulas
by Ω which is finite. In the modal language of L we have
belief operator Bi for all i ∈ Ag . We assume that there is
a bound on communication for each agent i which limits
agent i to at most nC(i) ∈ Z∗ messages. Each agent has
a communication counter, cp=n

i , which starts at 0 (cp=0
i )

and is not allowed to exceed the value nC(i). We divide
agent’s memory into two parts as rule memory (knowledge
base) and working memory. Rule memory holds set of rules,
whereas the facts are stored in the agent’s working mem-
ory. Working memory is divided into static memory (SM (i))
and dynamic memory (DM (i)). The DM (i) of each agent
i ∈ Ag is bounded in size by nM (i) ∈ Z∗, where one unit
of memory corresponds to the ability to store an arbitrary
formula. The static part contains initial information to start
up the systems, e.g., initial working memory facts, thus its
size is determined by the number of initial facts. The dy-
namic part contains newly derive facts as the system moves.
Only formulas stored in DM (i) may get overwritten if it
is full. Note that unless otherwise stated, in the rest of the
paper we shall assume that memory means DM (i). For con-
venience, we define the following sets: CPi = {cp=n

i | n =

{0, . . . , nC(i)}}, CP =
⋃
i∈Ag

CPi.
The syntax of LOCRS includes the temporal operators

of CTL∗ and is defined inductively as follows:

– > (tautology) and start (a propositional variable which
is only true at the initial moment of time) are well-formed
formulas (wff) of LOCRS ;

– cp=n
i (which states that the value of agent i’s commu-

nication counter is n) is a wff of LOCRS for all n ∈
{0, . . . , nC(i)} and i ∈ Ag;

– BiC(a) (agent i believes C(a)), BiR(a, b) (agent i be-
lieves R(a, b)), and Bir (agent i believes r) are wffs of
LOCRS for any C ∈ C, R ∈ R, r ∈ < and i ∈ Ag;

– BkAsk(i, j, C(a)),BkAsk(i, j, R(a, b)),BkTell(i, j, C(

a)), and BkTell(i, j, R(a, b)) are wffs of LOCRS for
any C ∈ C, R ∈ R, i, j ∈ Ag , k ∈ {i, j}, and i 6= j;

– If ϕ and ψ are wffs of LOCRS , then so are ¬ϕ and ϕ∧ψ;
– If ϕ and ψ are wffs of LOCRS , then so are Xϕ (in the

next state ϕ), ϕUψ (ϕ holds until ψ), Aϕ (on all paths
ϕ).

Other classical abbreviations for ⊥, ∨,→ and↔, and tem-
poral operations: Fϕ ≡ >Uϕ (at some point in the future
ϕ) and Gϕ ≡ ¬F¬ϕ (at all points in the future ϕ), and
Eϕ ≡ ¬A¬ϕ (on some path ϕ) are defined as usual.

The semantics of LOCRS is defined by LOCRS transi-
tion systems which are based on ω-tree structures. Let (S, T )

be a pair where S is a set and T is a binary relation on S that
is total, i.e., ∀s ∈ S ·∃s′ ∈ S ·sTs′. A branch of (S, T ) is an
ω-sequence (s0, s1, . . .) such that s0 is the root and siTsi+1

for all i ≥ 0. We denoteB(S, T ) to be the set of all branches
of (S, T ). For a branch π ∈ B(S, T ), πi denotes the element
si of π and π≤i is the prefix (s0, s1, . . . , si) of π. A LOCRS
transition system M is defined as M = (S, T, V ) where

– (S, T ) is a ω-tree frame
– V : S ×Ag → ℘(Ω ∪CP ); we define the belief part of

the assignment V B(s, i) = V (s, i) \ CP and the com-
munication counter part V C(s, i) = V (s, i) ∩ CP . We
further define VM (s, i) = {α|α ∈ DM (i)}. V satisfies
the following conditions:
1. |V C(s, i)| = 1 for all s ∈ S and i ∈ Ag .
2. If sTs′ and cp=n

i ∈ V (s, i) and cp=m
i ∈ V (s′, i)

then n ≤ m.
– we say that a rule r : P1, P2, . . . , Pn → P is applica-

ble in a state s of an agent i if ant(r̄) ∈ V (s, i) and
cons(r̄) /∈ V (s, i). The following conditions on the as-
signments V (s, i), for all i ∈ Ag , and transition relation
T hold in all models:
1. for all i ∈ Ag , s, s′ ∈ S, and r ∈ <, r ∈ V (s, i)

iff r ∈ V (s′, i). This describes that agent’s program
does not change.

2. for all s, s′ ∈ S, sTs′ holds iff for all i ∈ Ag, V (s′, i)

= V (s, i)∪{cons(r̄)}∪{Ask(j, i, C(a))}∪{Tell(j,
i, C(a)}∪{Ask(j, i, R(a, b))}∪{Tell(j, i, R(a, b)}.
This describes that each agent i fires a single appli-
cable rule instance of a rule r, or updates its state by
interacting with other agents, otherwise its state does
not change.

The truth of a LOCRS formula at a point n of a path
π ∈ B(S, T ) is defined inductively as follows:

– M, π, n |= >,
– M, π, n |= start iff n = 0,
– M, π, n |= Biα iff α ∈ V (πn, i),
– M, π, n |= cp=m

i iff cp=m
i ∈ V (πn, i),

– M, π, n |= ¬ϕ iff M, π, n 6|= ϕ,
– M, π, n |= ϕ ∧ ψ iff M, π, n |= ϕ and M, π, n |= ψ,
– M, π, n |= Xϕ iff M, π, n+ 1 |= ϕ,
– M, π, n |= ϕUψ iff ∃m ≥ n such that ∀k ∈ [n,m)

M, π, k |= ϕ and M, π,m |= ψ,
– M, π, n |= Aϕ iff ∀π′ ∈ B(S, T ) such that π′≤n = π≤n,
M, π′, n |= ϕ.

We now describe conditions on the models. The tran-
sition relation T corresponds to the agent’s executing ac-
tions 〈act1, act2, . . . , actnAg

〉 where acti is a possible ac-
tion of an agent i in a given state s. The set of actions that
each agent i can perform are: Rulei,r,β (agent i firing a
rule instance r̄ and adding cons(r̄) to its working memory
and removing β), Copyi,α,β (agent i copying α from other
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agent’s memory and removing β, where α is of the form
Ask(j, i, P ) or Tell(j, i, P ), and Idlei (agent i does noth-
ing but moves to the next state). Intuitively, β is an arbitrary
facts which gets overwritten if it is in the agent’s dynamic
memory DM (i). If agent’s memory is full |VM (s, i)| =

nM (i) then we require that β has to be in VM (s, i). Not
all actions are possible in a given state. For example, there
may not be any matching rule instances. When the counter
value reaches to nC(i), i cannot perform copy action any
more. Let us denote the set of all possible actions by agent i
in a given state s by Ti(s) and its definition is given below:

Definition 2 (Available actions) For every state s and agent
i,

1. Rulei,r,β ∈ Ti(s) iff r ∈ V (s, i), ant(r̄) ⊆ V (s, i),
cons(r̄) /∈ V (s, i), β ∈ Ω or if |VM (s, i)| = nM (i)

then β ∈ VM (s, i);
2. Copyi,α,β ∈ Ti(s) iff there exists j 6= i such that α ∈
V (s, j), α /∈ V (s, i), cp=m

i ∈ V (s, i) for some m <

nC(i), α is of the form Ask(j, i, P ) or Tell(j, i, P ), and
β as before;

3. Idlei is always in Ti(s).

Definition 3 (Effect of actions) For each i ∈ Ag , the result
of performing an action acti in a state s ∈ S is defined if
acti ∈ Ti(s) and has the following effect on the assignment
of formulas to i in the successor state s′ ∈ S:

1. if acti isRulei,r,β : V (s′, i) = V (s, i)\{β}∪{cons(r̄)};
2. if acti is Copyi,α,β , cp=m

i ∈ V (s, i) for some m ≤
nC(i): V (s′, i) = V (s, i) \ {β, cp=m

i } ∪ {α, cp
=m+1
i };

3. if acti is Idlei: V (s′, i) = V (s, i).

Now, the definition of the set of models corresponding
to a system of rule-based reasoners is given below:

Definition 4 M(nM , nC) is the set of models (S, T, V ) which
satisfies the following conditions:

1. cp=0
i ∈ V (s0, i) where s0 ∈ S is the root of (S, T ),
∀i ∈ Ag;

2. ∀s ∈ S and a tuple of actions 〈act1, act2, . . . , actnAg
〉,

if acti ∈ Ti(s),∀i ∈ Ag , then ∃s′ ∈ S s.t. sTs′ and s′

satisfies the effects of acti, ∀i ∈ Ag;
3. ∀s, s′ ∈ S, sTs′ iff for some tuple of actions 〈act1, act2,
. . . , actnAg

〉, acti ∈ Ti(s) and the assignment in s′ sat-
isfies the effects of acti, ∀i ∈ Ag;

4. The bound on each agent’s memory is set by the follow-
ing constraint on the mapping V : |VM (s, i)| ≤ nM (i),
∀s ∈ S,i ∈ Ag .

Note that the bound nC(i) on each agent i’s communi-
cation ability (no branch contains more than nC(i) Copy

actions by agent i) follows from the fact that Copyi is only
enabled if i has performed fewer than nC(i) copy actions in
the past. Below are some abbreviations which will be used
in the axiomatization:

– ByRulei(P,m) = ¬BiP∧cp=m
i ∧

∨
r∈<∧cons(r̄))=P (Bir

∧
∧
Q∈ant(r̄)BiQ). This formula describes the state be-

fore the agent comes to believe formula P by the Rule
transition, m is the value of i’s communication counter,
P and Q are ground atomic formulas.

– ByCopyi(α,m) = ¬Biα∧Bjα∧ cp=m−1
i , where α is

of the form Ask(j, i, P ) or Tell(j, i, P ), i, j ∈ Ag and
i 6= j.

Now we introduce the axiomatization system.

A1 All axioms and inference rules of CTL∗ [24].
A2

∧
α∈DM (i)

Biα → ¬Biβ for all DM (i) ⊆ Ω such that

|DM (i)| = nM (i) and β /∈ DM (i). This axiom de-
scribes that, in a given state, each agent can store maxi-
mally at most nM (i) formulas in its memory,

A3
∨

n=0,...,nC(i)

cp=n
i , n is value of the communication counter

of an agent i corresponding to its Copy actions.
A4 cp=n

i → ¬cp=m
i for any m 6= n,

A5 Bir ∧
∧
P∈ant(r̄)BiP ∧ cp=n

i ∧ ¬Bicons(r̄) → EX(

Bicons(r̄)∧cp=n
i ), i ∈ Ag . This axiom describes that if

a rule matches, its consequent belongs to some successor
state.

A6 cp=m
i ∧ ¬Biα ∧ Bjα → EX(Biα ∧ cp=m+1

i ) where
α is of the form Ask(j, i, P ) or Tell(j, i, P ), i, j ∈ Ag ,
j 6= i, m < nC(i). This axiom describes transitions
made by Copy with communication counter increased.

A7 EX(Biα∧Biβ)→ Biα∨Biβ, where α and β are not of
the form Ask(j, i, P ) and Tell(j, i, P ). This axiom says
that at most one new belief is added in the next state.

A8 Biα → AXBiα for any α ∈ SM (i) ∪ <. This axiom
states that an agent i ∈ Ag always believes formulas
residing in its static memory and its rules.

A9 EX(Biα∧cp=m
i )→ Biα∨ByRulei(α,m)∨ByCopyi(

α,m) for any α ∈ ∪Ω. This axiom says that a new belief
can only be added by one of the valid reasoning actions.

A10a start→ cp=0
i for all i ∈ Ag . At the start state, the agent

has not performed any Copy actions.
A10b ¬EX start. start holds only at the root of the tree.

A11 Bir where r ∈ < and i ∈ Ag . This axiom tells agent i
believes its rules.

A12 ¬Bir where r /∈ < and i ∈ Ag . This axiom tells agent i
only believes its rules.

A13 ϕ→ EXϕ, where ϕ does not contain start. This axiom
describes an Idle transition by all the agents.

A14
∧
i∈Ag

EX(
∧
α∈Γi

Biα∧cp=mi
i )→ EX

∧
i∈Ag

(
∧
α∈Γi

Biα∧cp=mi
i ) for any Γi ⊆ Ω. This axiom describes that

if each agent i can separately reach a state where it be-
lieves formulas in Γi, then all agents together can reach
a state where for each i, agent i believes formulas in Γi.

Let us now define the logic obtained from the above ax-
iomatisation system.
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Definition 5 L(nM , nC) is the logic defined by the axioma-
tisation A1 - A14.

Theorem 1 L(nM , nC) is sound and complete with respect
to M(nM , nC).

Sketch of Proof. The proof of soundness is standard. The
proofs for axioms and rules included in A1 are given in [24].
Axiom A2 assures that at a state, each agent can store max-
imally at most nM (i) formulas in its memory. Axioms A3
and A4 force the presence of a unique counter for each agent
to record the number of copies it has performed so far. In
particular, A3 makes sure that at least a counter is available
for any agent and A4 guaranties that only one of them is
present. In the following, we provide the proof for A5 and
A6. The proofs for other axioms are similar.

Let M = (S, T, V ) ∈ M(nM , nC), π ∈ B(S, T ) and
n ≥ 0. We assume that M, π, n |= Bir ∧

∧
P∈ant(r̄)BiP ∧

cp=m
i ∧ ¬Bicons(r̄), for some r ∈ <, and |VM (s, i)| ≤

nM (i). ThenP ∈ V (πn, i) for allP ∈ ant(r̄), and cons(r̄) /∈
V (πn, i). This means that the action performed by i isRulei,r,β .
According to the definition of M(nM , nC), ∃s′ ∈ S · πnTs′
and V (s′, i) = V (πn, i) \ {β} ∪ {cons(r̄)}. Let π′ be a
branch in B(S, T ) such that π′≤n = π≤n and π′n+1 = s′.
Then we have M, π′, n + 1 |= Bicons(r̄) ∧ cp=m

i . There-
fore, it is obvious that M, π, n |= EX(Bicons(r̄) ∧ cp=m

i ).
Let us consider A6. Let M = (S, T, V ) ∈ M(nM , nC),

π ∈ B(S, T ) and n ≥ 0. We assume that M, π, n |= cp=m
i ∧

¬Biα ∧ Bjα, and |VM (s, i)| ≤ nM (i). Then cp=m
i ∈

V (πn, i), α /∈ V (πn, i), and α ∈ V (πn, j), for i, j ∈ Ag ,
i 6= j, and m < nC(i). This means that the action per-
formed by i is Copyi,α,β . According to the definition of
M(nM , nC), ∃s′ ∈ S · πnTs′ and V (s′, i) = V (πn, i) \
{β, cp=m

i } ∪ {α, cp
=m+1
i }. Let π′ be a branch in B(S, T )

such that π′≤n = π≤n and π′n+1 = s′. Then we have M, π′, n+

1 |= Biα∧ cp=m+1
i . Therefore, it is obvious that M, π, n |=

EX(Biα ∧ cp=m+1
i ).

Completeness can be shown by constructing a tree model
for a consistent formula ϕ. This is constructed as in the com-
pleteness proof introduced in [24]. Then we use the axioms
to show that this model is in M(nM , nC).

Since the initial state of all agents does not restrict the
set of formulas they may derive in the future, for simplic-
ity we conjunctively add to ϕ a tautology that contains all
the potentially necessary formulas and message counters, in
order to have enough sub-formulas for the construction. We
construct a model M = (S, T, V ) for

ϕ′ = ϕ ∧
∧
α∈Ω

(XBiα ∨ ¬XBiα)∧∧
n∈{0...nC(i)},i∈Ag

(Xcp=n
i ∨ ¬Xcp=n

i )

We then prove that M is in M(nM , nC) by showing that
it satisfies all properties listed in Definition 4. Axioms A3

and A4 show that for any i ∈ Ag , there exists a unique n ∈
{0 . . . nC} such that at a state s of M, cp=n

i ∈ V (s, i).
At the root s0 of (S, T ), the construction of the model

implies that there exists a maximally consistent set (MCS)
Γ0 such that Γ0 ⊇ V (s0, i) and start ∈ Γ0. Therefore, by
axiom A10, it is trivial that cp=0

i ∈ V (s0, i).
We then need to prove that ∀s ∈ S, acti ∈ Ti(s), and i ∈

Ag , ∃s′ ∈ S · sTs′ and V (s′, i) is the result of V (s, i) after
i has performed action acti. Let us consider the case when
acti is Rulei,r,β ∈ Ti(s) for some r ∈ <. Since Rulei,r,β
is applicable at s, ant(r̄) ⊆ V (s, i), cons(r̄) /∈ V (s, i).
Therefore there exists a MCS Γ such that Γ ⊇ V (s, i),
and

∧
P∈ant(r̄)BiP ∧ cp=m

i ∧ ¬Bicons(r̄) ∈ Γ , for some
m ∈ {0, . . . , nC} and |VM (s, i)| ≤ nM (i). By axiom A5
and Modus Ponens (MP), EX(Bicons(r̄) ∧ cp=m

i ) ∈ Γ .
Therefore, according to the construction, ∃s′ ∈ S · sTs′,
V (s′, i) ⊆ Γ ′ for some Γ ′, and Bicons(r̄) ∧ cp=m

i ∈ Γ ′.
Therefore V (s′, i) = V (s, i) \ {β} ∪ {cons(r̄)}. For the
Copyi,α,β ∈ Ti(s) and Idlei ∈ Ti(s) actions, the proofs
are similar by using MP and axioms A6 and axiom A13.
Then, using axiom A14 we can show that, for any tuple of
actions 〈act1, act2, . . . , actnAg

〉, acti ∈ Ti(s) is applicable
at s ∈ S ∀i ∈ Ag , then ∃s′ ∈ S such that V (s′, i) is the re-
sult of V (s, i) after performing acti at s by agent i, ∀i ∈ Ag .

Finally, we prove that ∀s, s′ ∈ S · sTs′, ∃ a tuple of
actions 〈act1, act2, . . . , actnAg

〉 and V (s′, i) is the result
of V (s, i) when agent i performs acti for all i ∈ Ag . By
axioms A7 and A2, V (s′, i) is different from V (s, i) by
at most one formula added and possibly a formula is re-
moved. If no formula is added or removed, we consider acti
to be Idlei. Let us now consider the case where a formula
α is added. By axiom A9, if cp=m

i ∈ V (s, i) for some
m ∈ {0, . . . , nC} then either cp=m

i or cpm+1
i ∈ V (s′, i).

If cp=m
i ∈ V (s′, i) then set acti to be Rulei,r,β for some

r ∈ V (s, i) , α = cons(r̄) /∈ V (s, i). If cp=m+1
i ∈ V (s′, i)

then set acti to be Copyi,α,β . Thus, we proved the existence
of the tuple 〈act1, act2, . . . , actnAg

〉 for sTs′. Therefore, M
is in M(nM , nC). 2

5 Maude encoding

We build a multi-agent rule-based context-aware system whose
rules are derived from the ontology of the smart space sce-
nario described in Section 2, and the example system is adopted
from [18,19]. The system consists of twelve agents, Figure 4
depicts smart space context-aware agents and their possible
interactions. These are Blood Pressure Measurement Agent
(1), Blood Sugar Measurement Agent (2), Heart Rate Mea-
surement Agent (3), Smart Bed Agent (4), ACEInhibitor
Box agent (5), Patient Monitor Agent (6), Communication
Manager Agent (7), Palliative Care Unit (PCU) Coordinator
Agent (8), General physician (formal care giver) Agent (9),
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Fig. 4 Agents and their possible interactions

General Nurse (formal care giver) agent (10), Relative (in-
formal care giver) Agent (11) and Emergency Service Agent
(12). Some of these agents, namely, 1, 2, 3, 4, 5 and 6 are lo-
cated at the smart home, 7, 8 and 12 are located at the health
centre, and the location of the care givers are not fixed. How-
ever, by adding more agents the system designer can make
the system much more complex. For the specification and
verification of the system we use Maude LTL model checker.
The choice of LTL is not essential, it is straightforward to
encode a LOCRS model for a standard model checker. We
use LTL because it is the logic supported by the Maude sys-
tem used in our case study. We chose the Maude LTL model
checker because it can model check systems whose states in-
volve arbitrary algebraic data types. The only assumption is
that the set of states reachable from a given initial state is fi-
nite. Rule variables can be represented directly in the Maude
encoding, without having to generate all ground instances
resulting from possible variable substitutions. We omit the
encoding here, however, it is similar to [23], apart from the
implementation of agents memory bounds.

The measurement agents 1, 2, and 3 are able to infer
high-level contexts from sensed low-level contexts using Horn
clause rules in their KB. They can classify current blood
pressure, blood sugar, and heart rate into different categories
based on their current measurement values. E.g., agent 1’s
KB contains rules including the following:
Person(?p), hasSystolicBloodPressure(?p, ?sbp), hasDiastolicBlood-
Pressure(?p, ?dbp), greaterThan(?sbp, ’140), greaterThan(?dbp, ’90)
→hasBPCategory(?p, ’Hypertension);

Person(?p), hasSystolicBloodPressure(?p, ?sbp), hasDiastolicBlood-
Pressure(?p, ?dbp), greaterThan(?sbp, ’180), greaterThan(?dbp, ’140)
→hasBPCategory(?p, ’HypertensiveCrisis);

Person(?p), hasSystolicBloodPressure(?p, ?sbp), hasDiastolicBlood-
Pressure(?p, ?dbp), greaterThan(?sbp, ’90), greaterThan(?dbp, ’60)
→hasBPCategory(?p, ’Hypotension);

Person(?p), hasSystolicBloodPressure(?p, ?sbp), hasDiastolicBlood-
Pressure(?p, ?dbp), greaterThan(?sbp, ’90), greaterThan(?dbp, ’60),
lessThan(?sbp, ’120), lessThan(?dbp, ’90)→hasBPCategory(?p, ’Nor-
mal); and
hasBPCategory(?p, ’Hypertension)→Tell(1,6,hasBPCategory(?p, ’Hy-
pertension)).

The first rule classifies that the person has blood pres-
sure category Hypertension if her Systolic Blood Pressure
is greater than 140 and Diastolic Blood Pressure is greater
than 90. That is, agent 1 may infer high-level context has-
BPCategory(’Mary, ’Hypertension) from the low-level con-
texts, e.g., hasSystolicBloodPressure(’Mary, ’145), hasDi-
astolicBloodPressure(’Mary, ’95), and so on. The fifth rule
is a communication rule of agent 1 through which it interacts
with agent 6 and passes the context hasBPCategory(’Mary,
’Hypertension) when it believes that Mary has Hypertension
at the moment. Similar to the above, agent 1 has other three
communication rules for other categories.

In a similar fashion, agent 2 may infer context hasDB-
Category(’Mary, ’EstablishedDiabetes) if Blood Sugar Level
Before Meal is greater than 126, and agent 3 may infer hasHRCat-
egory(’Mary, ’BelowAverage) if current Heart Rate is greater
than 74ft and less than 80, and so on. Agent 2 and 3’s KBs
contain rules including the following:
Person(?p), hasBloodSugarLevelBeforeMeal(?p, ?bsl), greaterThan(?bsl,
’126)→ hasDBCategory(?p, ’EstablishedDiabetes); and
hasDBCategory(?p, ’EstablishedDiabetes)→ Tell(2,6,hasDBCategory(?p,
’EstablishedDiabetes)).

Person(?p), hasHeartRate(?p, ?hrt), greaterThan(?hrt, ’74), lessThan(
?hrt, ’80)→hasHRCategory(?p, ’BelowAverage); and
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hasHRCategory(?p,’BelowAverage)→ Tell(3,6,hasHRCategory(?p, ’Be-
lowAverage)).

Once these agents infer high level contexts they can in-
teract with the patient monitor agent 6 and pass those infor-
mation. Agent 6’s KB contains rules including:
Person(?p), hasPatientID(?p,?pid), PatientID(?pid)→ Patient(?p);

Tell(1,6,hasBPCategory(?p,’Hypertension))→ hasBPCategory(?p, ’Hy-
pertension);

Patient(?p), hasBPCategory(?p,’HypertensiveCrisis), hasDBCategory(?p,
’EstablishedDiabetes), hasHRCategory(?p,’Poor)→ hasAlarmLevel(?p,
’VeryHigh);

Patient(?p), hasBPCategory(?p,’HypertensiveCrisis), hasDBCategory(?p,
’EstablishedDiabetes), hasHRCategory(?p,’BelowAverage)→ hasAlarm-
Level(?p,’High);

hasAlarmLevel(?p,’High))→ hasPrescribedDrug(?p,’ACEInhibitor);

hasPrescribedDrug(?p,’ACEInhibitor) → Tell(6,5, ACEInhibitorBox(
’SwitchedON)); and
hasAlarmLevel(?p,’High)→Tell(6,7,hasAlarmLevel(?p,’High)).

The first rule checks whether the person is a patient. The
second rule is a trust rule for agent 6 that causes it to believe
agent 1 when agent 1 informs it that context, for example,
hasBPCategory(’Mary, ’Hypertension). Agent 6 may infer
various other contexts depending on the current contexts it
has received from those measurement agents. The patient
monitor agent also classifies the alarm levels based on the
contexts and interacts with other agents. Using the second
rule, agent 6 infers the context, for example, hasPrescribed-
Drug(’Mary, ’ACEInhibitor) which prescribes the drug ACEIn-
hibitor to Mary. Using the third rule agent 6 interacts with
agent 5 and informs that the indicator of the ACEInhinitor
Box must be switched on, so that patient can know she has
to take ACEInhibitor at this moment. The patient monitor
agent also interacts with the communication manager agent
7 which is located in the health centre. Once the communica-
tion manager agent receives the alarming information from
agent 6, it communicates with the PCU coordinator agent.
Depending on the alarm level, PCU coordinator agent inter-
acts with various agents including general physician, nurse,
relative and emergency service. For example, if the alarm
level is VeryHigh, PCU coordinator directly informs to the
emergency service. If the alarm level is Low, PCU coordi-
nator only informs to the relative. If the alarm level is High,
PCU coordinator interacts with the nurse and waits for a re-
sponse. If it receives NotAvailalabe or Busy response, then
it interacts with the general physician, and waits for a re-
sponse, if it also receives NotAvailalabe or Busy response
from the physician, then PCU coordinator informs the pa-
tient’s alarming level to the emergency service, and so on.
For the sake of brevity, we are unable to represent exam-
ple rules of other agents in the system. In order to model
this scenario we have derived 176 Horn clause rules from
the smart space ontology and distributed them to the agents
as working memory facts and knowledge base rules. E.g.,

the KB of the blood pressure measurement agent contains
8 rules, heart rate measurement agent is modelled using 12

rules, patient monitor agent is modelled using 30 rules, PCU
coordinator agent is modelled using 36 rules and so on. We
verified a number of interesting resource-bounded proper-
ties of the system including the following:
G(B6Tell(1 , 6 , hasBPCategory(′Mary,′ Hypertension))
∧ B6Tell(2 , 6 , hasDBCategory(?p,′ EstablishedDiabetes))
∧ B6Tell(3 , 6 , hasHRCategory(?p,′ BelowAverage))
→ X nB6Tell(6 , 7 , hasAlarmLevel(′Mary,′ High))

the above property specifies that whenever agents 1, 2, and
3 tell agent 6 that the blood pressure, diabetes, and heart
rate categories are Hypertension, EstablishedDiabetes , and
BelowAverage, respectively, of the patient Mary, within n
time steps agent 6 sending a classified message to agent 7

that the alarm level of the patient Mary is High.
G(B8hasAlarmLevel(′Mary,′ High)
∧ B8Tell(9 , 8 , hasCareStatus(′John,′ NotAvailable))
→ X n B8Tell(8 , 12 , hasAlarmLevel(′Mary,′ High)))

the above property specifies that whenever alarm level of
the patient Mary is High and the PCU coordinator agent
has interacted the physician Dr John and received acknowl-
edgement as NotAvailable, then the PCU coordinator agent
informs the patient’s alarm level to the emergency service
within n timesteps.
G(B6hasAlarmLevel(′Mary,′ High)
→ X n B6Tell(6 , 5 ,ACEInhibitorBox(′SwitchedON ))
∧cp6=m)

which specifies that whenever agent 6 classifies that alarm
level of the patient Mary is High, within n time steps it tells
agent 5 to switch on the indicator of the ACEInhibitor Box,
so that Mary should know she has to take ACEInhibitor,
while exchanging m messages (cp6

=m states that the value
of agent 6’s communication counter is m).

The above properties are verified as true when the value
of n is 7 in the first property, value of n is 3 in the second
property, and the values of n and m are 4 and 5 in the third
property. However, the properties are verified as false and
the model checker returns counterexamples when we assign
a value to n which is less than 7 in the first property, less
than 3 in the second property, and values to n and m which
are less than 4 and 5 in the third property. While verifying
the first property, agents 1, 2, and 3 have the same dynamic
memory size of 2 units and the memory size of the agent 6

is 6 units. For the second property, agent 8 requires 3 units
and for the third property agent 6 requires 4 units of mem-
ory space for their reasoning tasks. These are the minimal
space requirements for their reasoning while verifying above
properties. Note that, while verifying a particular property,
the amount of space needed for the reasoning task for an
agent(s) may vary for other properties. Therefore, a system
designer has to decide what are the desired properties of the
system that should be verified, and what would be an opti-
mal use of resources for that problem.
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6 Conclusions and future work

In this paper, we presented a formal logical framework for
modelling and verifying context-aware multi-agent systems.
Where agents reason using ontology-driven first order Horn
clause rules. We considered space requirement for reasoning
in addition to the time and communication resources. We
extend CTL∗ with belief and communication modalities,
and the resulting logic LOCRS allows us to describe a set
of rule-based reasoning agents with bound on time, mem-
ory and communication. We modelled an ontology-based
context-aware system to show how we can encode a LOCRS
model using Maude LTL model checker and formally verify
its resource-bounded properties. In future work, we would
like to develop a framework that will allow us to design
context-aware agents considering non-monotonic reasoning.
The logic developed in this paper is based on monotonic rea-
soning where beliefs of an agent cannot be revised based
on some contradictory evidence. We would like to extend
this logic considering defeasible reasoning which is a sim-
ple rule-based technique used to reason with incomplete and
inconsistent information [6].
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