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Modeling Network Coded TCP:
Analysis of Throughput and Energy Cost

MinJi Kim∗, Thierry Klein†, Emina Soljanin†, João Barros§, Muriel Médard∗

Abstract—We analyze the performance of TCP and TCP with
network coding (TCP/NC) in lossy networks. We build upon the
framework introduced by Padhye et al. and characterize the
throughput behavior of classical TCP and TCP/NC as a function
of erasure probability, round-trip time, maximum window si ze,
and duration of the connection. Our analytical results show
that network coding masks random erasures from TCP, thus
preventing TCP’s performance degradation in lossy networks. It
is further seen that TCP/NC has significant throughput gains
over TCP.

In addition, we show that TCP/NC may lead to cost reduction
for wireless network providers while maintaining a certain
quality of service to their users. We measure the cost in terms of
number of base stations, which is highly correlated to the energy,
capital, and operational costs of a network provider. We show
that increasing the available bandwidth may not necessarily lead
to increase in throughput, particularly in lossy networks in which
TCP does not perform well. We show that using protocols such
as TCP/NC, which are more resilient to erasures, may lead to a
throughput commensurate the bandwidth dedicated to each user.

I. I NTRODUCTION

The Transmission Control Protocol (TCP) is one of the
core protocols of today’s Internet Protocol Suite. TCP was
designed for reliable transmission over wired networks, in
which losses are generally indication of congestion. This is
not the case in wireless networks, where losses are often
due to fading, interference, and other physical phenomena.
Consequently, TCP’s performance in wireless networks is poor
when compared to the wired counterparts as shown e.g. in [1],
[2]. There has been extensive research to combat these harmful
effects of erasures and failures [3]–[5]; however, TCP even
with modifications does not achieve significant improvement.
For example, there has been suggestions to allow TCP sender
to maintain a large transmission window to overcome the
random losses within the network. However, as we shall show
in this paper, just keeping the window open does not lead to
improvements in TCP’s performance. Even if the transmission
window is kept open, the sender can not transmit additional
packets into the network without receiving acknowledgments.
References [5], [6] give an overview and a comparison of
various TCP versions over wireless links.
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Some relief may come from network coding [7], which has
been introduced as a potential paradigm to operate commu-
nication networks, in particular wireless networks. Network
coding allows and encourages mixing of data at intermediate
nodes, which has been shown to increase throughput and
robustness against failures and erasures [8]. There are several
practical protocols that take advantage of network coding in
wireless networks [9]–[12]. In order to combine the benefitsof
TCP and network coding, [13] proposes a new protocol called
TCP/NC.

In this paper, we present a performance evaluation of TCP
as well as TCP/NC in lossy networks. We adopt and extend the
TCP model in [2] – i.e. we consider standard TCP with Go-
Back-N pipe lining. Thus, the standard TCP discards packets
that are out-of-order. We analytically show the throughput
gains of TCP/NC over standard TCP. We characterize the
steady state throughput behavior of both TCP and TCP/NC
as a function of erasure rate, round-trip time (RTT), and
maximum window size. Furthermore, we use NS-2 (Network
Simulator [14]) to verify our analytical results for TCP and
TCP/NC. Our analysis and simulations show that TCP/NC is
robust against erasures and failures. TCP/NC is not only able
to increase its window size faster but also maintain a large
window size despite losses within the network. Thus, TCP/NC
is well suited for reliable communication in lossy networks. In
contrast, standard TCP experiences window closing as losses
are mistaken to be congestion.

We use the model for TCP/NC’s and TCP’s performance to
study their effect on cost of operating a network. In particular,
we show that maintaining or even improving users’ quality
of experience may be achieved without installing additional
network infrastructure, e.g. base stations. We measure users’
quality of experience using the throughput perceived by the
user. We make a clear distinction between the terms throughput
and bandwidth, where throughput is the number ofuseful
bits over unit time received by the user and bandwidth is
the number of bits transmitted by the base station per unit
time. In essence, bandwidth is indicative of the resources
provisioned by the service providers; while throughput is
indicative of the user’s quality of experience. For example,
the base station, taking into account the error correction codes,
may be transmitting bits at 10 megabits per second (Mbps),
i.e. bandwidth is 10 Mbps. However, the user may only receive
useful information at 5 Mbps, i.e. throughput is 5 Mbps.

The disparity between throughput and bandwidth used can
be reduced by using a transport protocol that is more resilient
to losses. One method is to use multiple base stations si-
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Fig. 1: Example of TCP and TCP/NC. In the case of TCP, the
TCP sender receives duplicate ACKs for packetp1, which
may wrongly indicate congestion. However, for TCP/NC, the
TCP sender receives ACKs for packetsp1 andp2; thus, the
TCP sender perceives a longer round-trip time (RTT) but does
not mistake the loss to be congestion.

multaneously (using multiple TCP connections [15] or mul-
tipath TPC [16]). However, the management of the multiple
streams or paths may be difficult, especially in lossy networks.
Furthermore, each path or TCP stream may still suffer from
performance degradation in lossy environments [15], [16].We
show that erasure-resilient protocols such as TCP/NC [13],
[17] can effectively reduce the disparity between throughput
and bandwidth.

There has been extensive research on modeling and analyz-
ing TCP’s performance [18]–[23]. Our goal is to present an
analysis for TCP/NC, and to provide a comparison of TCP and
TCP/NC in a lossy wireless environment. We adopt Padhye et
al.’s model [2] as their model provides a simple yet good model
to predict the performance of TCP. It would be interesting
to extend and analyze TCP/NC in other TCP models in the
literature.

This paper is based on the work from [17], [24]. The
paper is organized as follows. In Section II, we provide a
brief overview of TCP/NC. In Section III, we introduce our
communication model. Then, we provide throughput analysis
for TCP and TCP/NC in Sections IV and V, respectively.
In Section VI, we provide simulation results to verify our
analytical results in Sections IV and V. In Section VII, we
present our model for analyzing the cost associated with
operating the network, and analyze the number of base stations
needed in Section VIII. We study the best case scenario in
Section IX, and compare this idealized scenario with those
of TCP and TCP/NC in Section X. Finally, we conclude in
Section XI.

II. OVERVIEW OF TCP/NC

Reference [13] introduces a newnetwork coding layer
between the TCP and IP in the protocol stack. The network
coding layer intercepts and modifies TCP’s acknowledgment
(ACK) scheme such that random erasures does not affect
the transport layer’s performance. To do so, theencoder,
the network coding unit under the sender TCP, transmitsR
random linear combinations of the buffered packets for every
transmitted packet from TCP sender. The parameterR is the
redundancy factor. Redundancy factor helps TCP/NC to re-
cover from random losses; however, it cannot mask correlated
losses, which are usually due to congestion. Thedecoder, the

network coding unit under the receiver TCP, acknowledges
degrees of freedom instead of individual packets, as shown in
Figure 1. Once enough degrees of freedoms are received at
the decoder, the decoder solves the set of linear equations to
decode the original data transmitted by the TCP sender, and
delivers the data to the TCP receiver.

We briefly note the overhead associated with network cod-
ing. The main overhead associated with network coding can be
considered in two parts: 1) the coding vector (or coefficients)
that has to be included in the header; 2) the encoding/decoding
complexity. For receiver to decode a network coded packet,
the packet needs to indicate the coding coefficients used to
generate the linear combination of the original data packets.
The overhead associated with the coefficients depend on the
field size used for coding as well as the number of original
packets combined. It has been shown that even a very small
field size ofF256 (i.e. 8 bits = 1 byte per coefficient) can
provide a good performance [13], [25]. Therefore, even if we
combine 50 original packets, the coding coefficients amount
to 50 bytes over all. Note that a packet is typically around
1500 bytes. Therefore, the overhead associated with coding
vector is not substantial. The second overhead associated with
network coding is the encoding and decoding complexity, and
the delay associated with the coding operations. Note that to
affect TCP’s performance, the decoding/encoding operations
must take substantial amount of time to affect the round-trip
time estimate of the TCP sender and receiver. However, we
note that the delay caused the coding operations is negligible
compared to the network round-trip time. For example, the
network round-trip time is often in milliseconds (if not in hun-
dreds of milliseconds), while a encoding/decoding operations
involve a matrix multiplication/inversion inF256 which can
be performed in a few microseconds.

III. A M ODEL FORCONGESTIONCONTROL

We focus on TCP’s congestion avoidance mechanism, where
the congestion control window sizeW is incremented by1/W
each time an ACK is received. Thus, when every packet in the
congestion control window is ACKed, the window sizeW is
increased toW + 1. On the other hand, the window sizeW
is reduced whenever an erasure/congestion is detected.

We model TCP’s behavior in terms ofrounds [2]. We denote
Wi to be the size of TCP’s congestion control window size at
the beginning of roundi. The sender transmitWi packets in
its congestion window at the start of roundi, and once allWi

packets have been sent, it defers transmitting any other packets
until at least one ACK for theWi packets are received. The
ACK reception ends the current round, and starts roundi+1.

For simplicity, we assume that the duration of each round
is equal to a round trip time (RTT ), independent ofWi. This
assumes that the time needed to transmit a packet is much
smaller than the round trip time. This implies the following
sequence of events for each roundi: first, Wi packets are
transmitted. Some packets may be lost. The receiver trans-
mits ACKs for the received packets. (Note that TCP uses
cumulative ACKs. Therefore, if the packets1, 2, 3, 5, 6 arrive



at the receiver in sequence, then the receiver ACKs packets
1, 2, 3, 3, 3. This signals that it has not yet received packet 4.)
Some of the ACKs may also be lost. Once the sender receives
the ACKs, it updates its window size. Assume thatai packets
are acknowledged in roundi. Then,Wi+1 ←Wi + ai/Wi.

TCP reduces the window size for congestion control using
the following two methods.

1)Triple-duplicate (TD): When the sender receives four
ACKs with the same sequence number, thenWi+1 ←

1
2Wi.

2)Time-out (TO): If the sender does not hear from the
receiver for a predefined time period, called the “time-out”
period (which isTo rounds long), then the sender closes its
transmission window,Wi+1 ← 1. At this point, the sender
updates its TO period to2To rounds, and transmits one packet.
For any subsequent TO events, the sender transmits the one
packet within its window, and doubles its TO period until
64To is reached, after which the TO period is fixed to64To.
Once the sender receives an ACK from the receiver, it resets
its TO period toTo and increments its window according
to the congestion avoidance mechanism. During time-out, the
throughput of both TCP and TCP/NC is zero.

Finally, in practice, the TCP receiver sends a single cumu-
lative ACK after receivingβ number of packets, whereβ = 2
typically. However, we assume thatβ = 1 for simplicity.
Extending the analysis toβ ≥ 1 is straightforward.

There are several variants to the traditional TCP conges-
tion control. For example, STCP [4] modifies the conges-
tion control mechanism for networks with high bandwidth-
delay products. Other variants include those with selective
acknowledgment schemes [3]. It may be interesting to compare
the performance of the TCP variants with that of TCP/NC.
However, we focus on traditional TCP here.

A. Maximum window size

In general, TCP cannot increase its window size unbound-
edly; there is a maximum window sizeWmax. The TCP
sender uses a congestion avoidance mechanism to increment
the window size untilWmax, at which the window size remains
Wmax until a TD or a TO event.

B. Erasures

We assume that there is are random erasures within in the
network. We denotep to be the probability that a packet
is lost at any given time. We assume that packet losses are
independent. We note that this erasure model is different from
that of [2] where losses are correlated within a round – i.e.
bursty erasures. Correlated erasures model well bursty traffic
and congestion in wireline networks. In our case, however,
we are aiming to model wireless networks, thus we shall use
random independent erasures.

We do not model congestion or correlated losses within
this framework, but show by simulation that when there are
correlated losses, both TCP and TCP/NC close their window;
thus, TCP/NC is able to react to congestion.

C. Performance metric

We analyze the performance of TCP and TCP/NC in terms
of two metrics: the average throughputT, and the expected
window evolutionE[W ], whereT represents the total average
throughput while window evolutionE[W ] reflects the per-
ceived throughput at a given time. We defineN[t1,t2] to be the
number of packets received by the receiver during the interval
[t1, t2]. The total average throughput is defined as:

T = lim
∆→∞

N[t,t+∆]

∆
. (1)

We denoteTtcp andTnc to be the average throughput for TCP
and TCP/NC, respectively.

D. Intuition

For traditional TCP, random erasures in the network can
lead to triple-duplicate ACKs. For example, in Figure 2a, the
sender transmitsWi packets in roundi; however, onlyai of
them arrive at the receiver. As a result, the receiver ACKs
the ai packets and waits for packetai + 1. When the sender
receives the ACKs, roundi+ 1 starts. The sender updates its
window (Wi+1 ← Wi + ai/Wi), and starts transmitting the
new packets in the window. However, since the receiver is
still waiting for packetai + 1, any other packets cause the
receiver to request for packetai + 1. This results in a triple-
duplicate ACKs event and the TCP sender closes its window,
i.e. Wi+2 ←

1
2Wi+1 = 1

2 (Wi + ai/Wi).
Notice that this window closing due to TD does not occur

when using TCP/NC as illustrated in Figure 2b. With net-
work coding, any linearly independent packet delivers new
information. Thus, any subsequent packet (in Figure 2b, the
first packet sent in roundi + 1) can be viewed as packet
ai + 1. As a result, the receiver is able to increment its
ACK and the sender continues transmitting data. It follows
that network coding masks the losses within the network from
TCP, and prevents it from closing its window by misjudging
link losses as congestion.Network coding translates random
losses as longer RTT, thus slowing down the transmission
rate to adjust for losses without closing down the window in
a drastic fashion.

Note that network coding does not mask correlated (or
bursty) losses due to congestion. With enough correlated
losses, network coding cannot correct for all the losses. As
a result, the transmission rate will be adjusted according to
standard TCP’s congestion control mechanism when TCP/NC
detects correlated losses. Therefore, network coding allows
TCP to maintain a high throughput connection in a lossy envi-
ronment; at the same time, allows TCP to react to congestion.
Thus, network coding naturally distinguishes congestion from
random losses for TCP.

IV. T HROUGHPUTANALYSIS FOR TCP

We consider the effect of losses for TCP. The throughput
analysis for TCP is similar to that of [2]. However, the model
has been modified from that of [2] to account for independent
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Fig. 2: The effect of erasures: TCP experiences triple-duplicate ACKs, and results inWi+2 ← Wi+1/2. However, TCP/NC
masks the erasures using network coding, which allows TCP toadvance its window. This figure depicts the sender’s perspective,
therefore, it indicates the time at which the sender transmits the packet or receives the ACK.

window size Wi

round i

j j+r-1

r rounds

Received packet

Lost packet

Out of order packets

Wj

Wj+r-1

j-2 (TD)

r+1 rounds = ∆ time interval

j+r (TO)

time-out

Fig. 3: TCP’s window size with a TD event and a TO event.
In roundj−2, losses occur resulting in triple-duplicate ACKs.
On the other hand, in roundj + r− 1, losses occur; however,
in the following roundj + r losses occur such that the TCP
sender only receives two-duplicate ACKs. As a result, TCP
experiences time-out.

losses and allow a fair comparison with network coded TCP.
TCP can experience a TD or a TO event from random losses.

We note that, despite independent packet erasures, a single
packet loss may affect subsequent packet reception. This is
due to the fact that TCP requires in-order reception. A single
packet loss within a transmission window forces all subsequent
packets in the window to be out of order. Thus, they are
discarded by the TCP receiver. As a result, standard TCP’s
throughput behavior with independent losses is similar to that
of [2], where losses are correlated within one round.

A. Triple-duplicate for TCP

We consider the expected throughput between consecutive
TD events, as shown in Figure 3. Assume that the TD events
occurred at timet1 and t2 = t1 + ∆, ∆ > 0. Assume that
roundj begins immediately after timet1, and that packet loss
occurs in ther-th round, i.e. roundj + r − 1.

First, we calculateE[N[t1,t2]]. Note that during the interval
[t1, t2], there are no packet losses. Given that the probability of
a packet loss isp, the expected number of consecutive packets
that are successfully sent from sender to receiver is

E
[

N[t1,t2]

]

=

( ∞
∑

k=1

k(1− p)k−1p

)

− 1 =
1− p

p
. (2)

The packets (in white in Figure 3) sent after the lost packets
(in black in Figure 3) are out of order, and will not be accepted

by the standard TCP receiver. Thus, Equation (2) does not take
into account the packets sent in roundj − 1 or j + r.

We calculate the expected time period between two TD
events,E[∆]. As in Figure 3, after the packet losses in round
j, there is an additional round for the loss feedback from the
receiver to reach the sender. Therefore, there arer+1 rounds
within the time interval[t1, t2], and∆ = RTT (r+ 1). Thus,

E[∆] = RTT (E[r] + 1). (3)

To deriveE[r], note thatWj+r−1 = Wj + r − 1 and

Wj =
1

2
Wj−1 =

1

2

(

Wj−2 +
aj−2

Wj−2

)

. (4)

Equation (4) is due to TCP’s congestion control. TCP in-
terprets the losses in roundj − 2 as congestion, and as a
result halves its window. Assuming that, in the long run,
E[Wj+r−1] = E[Wj−2] and thataj−2 is uniformly distributed
between[0,Wj−2],

E[Wj+r−1] = 2

(

E[r] −
3

4

)

andE[Wj ] = E[r] −
1

2
. (5)

During theser rounds, we expect to successfully transmit1−p
p

packets as noted in Equation (2). This results in:

1− p

p
=

(

r−2
∑

k=0

Wj+k

)

+ aj+r−1 (6)

= (r − 1)Wj +
(r − 1)(r − 2)

2
+ aj+r−1. (7)

Taking the expectation of Equation (7) and using Equation (5),

1− p

p
=

3

2
(E[r]− 1)2 + E[aj+r−1]. (8)

Note thataj+r−1 is assumed to be uniformly distributed across
[0,Wj+r−1]. Thus,E[aj+r−1] = E[Wj+r−1]/2 = E[r] − 3

4
by Equation (5). Solving Equation (8) forE[r], we find:

E[r] =
2

3
+

√

−
1

18
+

2

3

1− p

p
. (9)

The steady stateE[W ] is the average window size over two
consecutive TD events. This provides an expression of steady
state average window size for TCP (using Equations (5)):

E[W ] =
E[Wj ] + E[Wj+r−1]

2
=

3

2
E[r]− 1. (10)
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Fig. 4: TCP/NC’s window size with erasures that would lead
to a triple-duplicate ACKs event when using standard TCP.
Note that unlike TCP, the window size is non-decreasing.

The average throughput can be expressed as

T ′
tcp =

E[N[t1,t2]]

E[∆]
=

1− p

p

1

RTT (E[r] + 1)
. (11)

For smallp, T ′
tcp ≈

1
RTT

√

3
2p + o( 1√

p ); for large p, T ′
tcp ≈

1
RTT

1−p
p . If we only consider TD events, the long-term steady

state throughput is equal to that in Equation (11).
The analysis above assumes that the window size can grow

unboundedly; however, this is not the case. To take maximum
window sizeWmax into account, we make a following ap-
proximation:

Ttcp = min

(

Wmax

RTT
, T ′

tcp

)

. (12)

For smallp, this result coincide with the results in [2].

B. Time-out for TCP

If there are enough losses within two consecutive rounds,
TCP may experience a TO event, as shown in Figure 3. Thus,
P(TO|W ), the probability of a TO event given a window size
of W , is given by

P(TO|W ) =

{

1 if W < 3;
∑

2

i=0

(

W

i

)

pW−i(1− p)i if W ≥ 3.
(13)

Note that when the window is small (W < 3), then losses
result in TO events. For example, assumeW = 2 with packets
p1 andp2 in its window. Assume thatp2 is lost. Then, the
TCP sender may send another packetp3 in the subsequent
round since the acknowledgment forp1 allows it to transmit
a new packet. However, this would generate a single duplicate
ACK with no further packets in the pipeline, and TCP sender
waits for ACKs until it times out.

We approximateW in above Equation (13) with the ex-
pected window sizeE[W ] from Equation (10). The length
of the TO event depends on the duration of the loss events.
Thus, the expected duration of TO period (in RTTs) is given in
Equation (15). Finally, by combining the results in Equations
(12), (13), and (15), we get an expression for the average
throughput of TCP as shown in Equation (16).
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Fig. 6: Markov chain for the TCP/NC’s window evolution.

V. THROUGHPUTANALYSIS FOR TCP/NC

We consider the expected throughput for TCP/NC. Note that
erasure patterns that result in TD and/or TO events under TCP
may not yield the same result under TCP/NC, as illustrated in
Section III-D. We emphasize again that this is due to the fact
that any linearly independent packet conveys a new degree
of freedom to the receiver. Figure 4 illustrates this effect
– packets (in white) sent after the lost packets (in black)
are acknowledged by the receivers, thus allowing TCP/NC
to advance its window. This implies that TCP/NC does not
experience window closing owing to random losses often.

A. TCP/NC Window Evolution

From Figure 4, we observe that TCP/NC is able to maintain
its window size despite experiencing losses. This is partially
because TCP/NC is able to receive packets that would be
considered out of order by TCP. As a result, TCP/NC’s
window evolves differently from that of TCP, and can be
characterized by a simple recursive relationship as

E[Wi] = E[Wi−1]+
E[ai−1]

E[Wi−1]
= E[Wi−1]+min{1, R(1−p)}.

The recursive relationship captures the fact that every packet
that is linearly independent of previously received packets is

P =











p 1 − p 0 0 0 · · · 0 0
0 p 1 − p 0 0 · · · 0 0
0 0 p 1 − p 0 · · · 0 0

.

.

.
. . .

. . . · · ·
.
.
.

0 0 0 0 0 0 p 1 − p
0 0 0 0 0 0 0 1











Fig. 7: Thetransition matrix P for the Markov chain in Figure
6. The shaded part of the matrix is denotedQ. Matrix N =
(I − Q)−1 is the fundamental matrix of the Markov chain,
and can be used to compute the expected rounds until the
absorption state.



E[duration of TO period] = (1− p)

[

Top+ 3Top
2 + 7Top

3 + 15Top
4 + 31Top

5 +

∞
∑

i=0

(63 + i · 64)Top
6+i

]

(14)

= (1− p)

[

Top+ 3Top
2 + 7Top

3 + 15Top
4 + 31Top

5 + 63To

p6

1− p
+ 64To

p7

(1− p)2

]

(15)

Ttcp = min





Wmax

RTT
,
1− p

p

1

RTT

(

5

3
+

√

− 1

18
+ 2

3

1−p

p
+P(TO|E[W ])E[duration of TO period]

)



 (16)

considered to beinnovative and is therefore acknowledged.
Consequently, any arrival at the receiver is acknowledged
with high probability; thus, we expectE[ai−1] packets to be
acknowledged and the window to be incremented byE[ai−1]

E[Wi−1]
.

Note thatE[ai−1] = (1 − p) · R · E[Wi−1] since the encoder
transmits on averageR linear combinations for every packet
transmitted by the TCP sender.

Once we takeWmax into account, we have the following
expression for TCP/NC’s expected window size:

E[Wi] = min(Wmax, E[W1] + imin{1, R(1− p)}), (17)

where i is the round number.E[W1] is the initial window
size, and we setE[W1] = 1. Figure 5 shows an example of
the evolution of the TCP/NC window using Equation (17).

1) Markov Chain Model: The above analysis describes the
expected behavior of TCP/NC’s window size. We can also
describe the window size behavior using a Markov chain as
shown in Figure 6. The states of this Markov chain represent
the instantaneous window size (not specific to a round). A
transition occurs whenever a packet is transmitted. We denote
S(W ) to be the state representing the window size ofW .
Assume that we are at stateS(W ). If a transmitted packet
is received by the TCP/NC receiver and acknowledged, the
window is incremented by 1

W ; thus, we end up in state
S(W + 1

W ). This occurs with probability(1−p). On the other
hand, if the packet is lost, then we stay atS(W ). This occurs
with probability p. Thus, the Markov chain states represent
the window size, and the transitions correspond to packet
transmissions.

Note thatS(Wmax) is an absorbing state of the Markov
chain. As noted in Section III-D, TCP/NC does not often
experience a window shutdown, which implies that there are
correlated or heavy losses. Thus, TCP/NC’s window size is
non-decreasing, as shown in Figure 6. Therefore, given enough
time, TCP/NC reaches stateS(Wmax) with probability equal
to 1. We analyze the expected number of packet transmissions
needed for absorption.

The transition matrix P and thefundamental matrix N =
(I − Q)−1 of the Markov chain is given in Figure 7. The
entry N(S1, S2) represents the expected number of visits to
stateS2 before absorption – i.e. we reach stateS(Wmax) –
when we start from stateS1. Our objective is to find the
expected number of packets transmitted to reachS(Wmax)
starting from stateS(E[W1]) whereE[W1] = 1. The partial
sum of the first row entries ofN gives the expected number

of packets transmitted until we reach the window sizeW .
The expression for the first row ofN can be derived using
cofactors: N(1, :) =

[

1
1−p ,

1
1−p , · · · ,

1
1−p

]

. The expected

number of packet transmissionsTp(W ) to reach a window
size ofW ∈ [1,Wmax] is:

Tp(W ) =

S(W )
∑

m=S(1)

N(1,m) =

S(W )
∑

m=S(1)

1

1− p
=

1

1− p

S(W )
∑

m=S(1)

1

=
W (W − 1)

2(1− p)
. (18)

Tp(W ) is the number of packets we expect to transmit
given the erasure probabilityp. If we set p = 0, then
T0(W ) = W (W−1)

2 . Therefore,W (W−1)
2 is the minimal num-

ber of transmission needed to achieveW (since this assumes
no packets are lost). Note thatTp(W )

T0(W ) = 1
1−p represents a lower

bound on cost when losses are introduced – i.e. to combat
random erasures, the sender on average has to send at least
1

1−p packets for each packet it wishes to send. This is exactly
the definition of redundancy factorR. This analysis indicates
that we should setR ≥ Tp(W )

T0(W ) . Furthermore,T0(W ) is equal

to the area under the curve for roundsi ∈ [0, W−E[W1]
min{1,R·(1−p)} ]

in Figure 5 if we setR ≥ 1
1−p . A more detailed discussion

on the effect ofR is in Section V-B1.

B. TCP/NC Analysis per Round

Using the results in Section V-A, we derive an expression
for the throughput. The throughput of roundi, Ti, is directly
proportional to the window sizeE[Wi], i.e.

Ti =
E[Wi]

SRTT
min{1, R(1− p)} packets per second, (19)

whereSRTT is the round trip time estimate. TheRTT and
its estimateSRTT play an important role in TCP/NC. We
shall formally define and discuss the effect ofR andSRTT
below.

We note thatTi ∝ (1− p) · R · E[Wi]. At any given round
i, TCP/NC sender transmitsR · E[Wi] coded packets, and
we expectpR · E[Wi] packets to be lost. Thus, the TCP/NC
receiver only receives(1− p) ·R ·E[Wi] degrees of freedom.

1) Redundancy Factor R: The redundancy factorR ≥ 1
is the ratio between the average rate at which linear combi-
nations are sent to the receiver and the rate at which TCP’s
window progresses. For example, if the TCP sender has 10
packets in its window, then the encoder transmits10R linear



combinations. IfR is large enough, the receiver will receive at
least10 linear combinations to decode the original 10 packets.
This redundancy is necessary to (a) compensate for the losses
within the network, and (b) match TCP’s sending rate to
the rate at which data is actually received at the receiver.
References [13], [25] introduce the redundancy factor with
TCP/NC, and show thatR ≥ 1

1−p is necessary. This coincides
with our analysis in Section V-A1.

The redundancy factorR should be chosen with some care.
If R < 1

1−p causes significant performance degradation, since
network coding can no longer fully compensate for the losses
which may lead to window closing for TCP/NC. To maximize
throughput, an optimal value ofR ≥ 1

1−p should be chosen.
However, settingR ≫ 1

1−p may over-compensate for the
losses within the network; thus, introducing more redundant
packets than necessary. On the other hand, matchingR to
exactly 1

1−p may not be desirable for two reasons: 1) The
exact value of 1

1−p may not be available or difficult to obtain
in real applications; 2) AsR → 1

1−p , it becomes more likely
that TCP/NC is unable tofully recover from losses in any
given round. Byfully recover, we mean that TCP/NC decoder
is able to acknowledge all packet transmitted in that round.
As we shall show in Section VI, TCP/NC can maintain a
fairly high throughput with just partial acknowledgment (in
each round, only a subset of the packets are acknowledged
owing to losses). However, we still witness a degradation in
throughput asR decreases. Thus, we assume thatR ≥ 1

1−p .
2) Effective Round Trip Time SRTT : SRTT is the round

trip time estimate that TCP maintains by sampling the behavior
of packets sent over the connection. It is denotedSRTT
because it is often referred to as “smoothed” round trip time
as it is obtained by averaging the time for a packet to be
acknowledged after the packet has been sent. We note that, in
Equation (19), we useSRTT instead ofRTT becauseSRTT
is the “effective” round trip time TCP/NC experiences.

In lossy networks, TCP/NC’sSRTT is often greater than
RTT . This can be seen in Figure 1. The first coded packet
(p1 + p2 +p3) is received and acknowledged (seen(p1)).
Thus, the sender is able to estimate the round trip time
correctly; resulting inSRTT = RTT . However, the second
packet (p1+ 2p2 + p3) is lost. As a result, the third packet
(p1 + 2p2+ 2p3) is used to acknowledge the second degree
of freedom (seen(p2)). In our model, we assume for simplic-
ity that the time needed to transmit a packet is much smaller
than RTT; thus, despite the losses, our model would result in
SRTT ≈ RTT . However, in practice, depending on the size
of the packets, the transmission time may not be negligible.

C. TCP/NC Average Throughput

Taking Equation (19), we can average the throughput over
n rounds to obtain the average throughput for TCP/NC.

Tnc =
1

n

n
∑

i=1

E[Wi]

SRTT
min{1, R(1− p)}

=
1

n · SRTT
· f(n), (20)

Fig. 8: Network topology for the simulations.

where

f(n) =

{

nE[W1] +
n(n+1)

2 for n ≤ r∗

nWmax − r∗(Wmax − E[W1]) +
r∗(r∗−1)

2 for n > r∗

r∗ = Wmax − E[W1].

Note that asn→∞, the average throughputTnc → Wmax

SRTT .
An important aspect of TCP is congestion control mecha-

nism. This analysis may suggest that network coding no longer
allows for TCP to react to congestion. We emphasize that
the above analysis assumes that there are only random losses
with probability p, and that there are no correlated losses.
It is important to note that the erasure correcting power of
network coding is limited by the redundancy factorR. If there
are enough losses (e.g., losses caused by congestion), network
coding cannot mask all the erasures from TCP. This may lead
TCP/NC to experience a TD or TO event, depending on the
variants of TCP used. In Section VI-C, we present simulation
results that show that TCP’s congestion control mechanism
still applies to TCP/NC when appropriate.

VI. SIMULATION RESULTS FORTHROUGHPUTANALYSIS

We use simulations to verify that our analysis captures the
behavior of both TCP and TCP/NC. We use NS-2 (Network
Simulator [14]) to simulate TCP and TCP/NC, where we
use the implementation of TCP/NC from [25]. Two FTP
applications (ftp0, ftp1) wish to communicate from the source
(src0, src1) to sink (sink0, sink1), respectively. There isno
limit to the file size. The sources generate packets continuously
until the end of the simulation. The two FTP applications use
either TCP or TCP/NC. We denote TCP0, TCP1 to be the two
FTP applications when using TCP; and we denote NC0, NC1
to be the two FTP applications when using TCP/NC.

The network topology for the simulation is shown in Figure
8. All links, in both forward and backward paths, are assumed
to have a bandwidth ofC Mbps, a propagation delay of 100
ms, a buffer size of 200, and a erasure rate ofq. Note that since
there are in total four links in the path from node 0 to node
4, the probability of packet erasure isp = 1− (1− q)4. Each
packet transmitted is assumed to be 8000 bits (1000 bytes).
We setWmax = 50 packets for all simulations. In addition,
time-out periodTo = 3

RTT = 3.75 rounds long (3 seconds).
Therefore, our variables for the simulations are:

• p = 1− (1− q)4: End-to-end erasure rate,
• R: Redundancy factor,
• C: Capacity of the links (in Mbps).

We study the effect these variables have on the following:

• T: Throughput of TCP or TCP/NC,
• E[W ]: Average window size of TCP or TCP/NC,
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Fig. 9: Throughput of TCP/NC and TCP with varying link erasure probabilityp.
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Fig. 10: The congestion window size of TCP/NC and TCP with varying link erasure probabilityp.
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Fig. 11: The round trip time estimate (SRTT) of TCP/NC and TCPwith varying link erasure probabilityp.
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Fig. 12: Throughput of TCP/NC forp = 0.0963 with varying redundancy factorR. Note that 1
1−p = 1.107.



• SRTT : Round-trip estimate.

For each data point, we average the performance over 100
independent runs of the simulation, each of which is 1000
seconds long.

A. Probability of erasure p

We setC = 2 Mbps andR = 1.25 regardless of the value
of p. We varyq to be 0, 0.005, 0.015, 0.025, and 0.05. The
correspondingp values are 0, 0.0199, 0.0587, 0.0963, and
0.1855. The results are shown in Figures 9, 10, and 11.

Firstly, we show that when there are no random erasures
(p = 0), then TCP/NC and TCP behave similarly, as shown
in Figures 9a, 10a, and 11a. Without any random losses and
congestion, all of the flows (NC0, NC1, TCP0, TCP1) achieve
the maximal throughput,Wmax

RTT ·
8

106 = 0.5 Mbps.
The more interesting result is whenp > 0. As our analysis

predicts, TCP/NC sustains its high throughput despite the
random erasures in the network. We observe that TCP may
close its window due to triple-duplicates ACKs or timeouts;
however, TCP/NC is more resilient to such erasure patterns.
Therefore, TCP/NC is able to increment its window consis-
tently, andmaintain the window size of 50 even under lossy
conditions when standard TCP is unable to (resulting in the
window fluctuation in Figure 10).

An interesting observation is that, TCP achieves a moderate
average window size although the throughput (Mbps) is much
lower (Figures 9 and 10). This shows that naı̈vely keeping
the transmission window open is not sufficient to overcome
the random losses within the network, and does not lead to
improvements in TCP’s performance. Even if the transmission
window is kept open (e.g. during timeout period), the sender
can not transmit additional packets into the network without
receiving ACKs. Eventually, this leads to a TD or TO event.

As described in Sections III-D and V-B2, TCP/NC masks
errors by translating losses as longer RTT. For TCP/NC, if a
specific packet is lost, the next subsequent packet receivedcan
“replace” the lost packet; thus, allowing the receiver to send an
ACK. Therefore, the longer RTT estimate takes into account
the delay associated with waiting for the next subsequent
packet at the receiver. In Figure 11, we verify that this is
indeed true. TCP, depending on the ACKs received, modifies
its RTT estimation; thus, due to random erasures, TCP’s RTT
estimate fluctuates significantly. On the other hand, TCP/NC
is able to maintain a consistent estimate of the RTT; however,
is slightly above the actual 800 ms.

B. Redundancy factor R

We set C = 2 Mbps. We vary the value ofp and R
to understand the relationship betweenR and p. In Section
V-B1, we noted thatR ≥ 1

1−p is necessary to mask random
erasures from TCP. However, asR → 1

1−p , the probability
that the erasures are completely masked decreases. This may
suggest that we needR ≫ 1

1−p for TCP/NC to maintain its
high throughput. However, we shall show thatR need not be
much larger than 1

1−p for TCP/NC to achieve its maximal
throughput.
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Fig. 13: Throughput of TCP/NC forp = 0.1855 with varying
redundancy factorR. Note that 1

1−p = 1.228.

In Figure 12, we present TCP/NC throughput behavior with
p = 0.0963 and varyingR. Note that 1

1−p = 1.107 for p =
0.0963. There is a dramatic change in throughput behavior as
we increaseR from 1.11 to 1.12. Note thatR = 1.12 is only
1% additional redundancy than the theoretical minimum, i.e.

1.12
1/(1−p) ≈ 1.01. Another interesting observation is that, even
with R = 1.10 or R = 1.11, TCP/NC achieves a significantly
higher throughput than TCP (in Figure 9d) forp = 0.0963.

Figure 9e shows that, withp = 0.1855, TCP/NC throughput
is not as steady, and does not achieve the maximal throughput
of 0.5 Mbps. This is because11−p = 1.23 is very close toR =
1.25. As a result,R = 1.25 is not sufficient to mask erasures
with high probability. In Figure 13, we show that TCP/NC
achieves an average throughput of 0.5 Mbps onceR ≥ 1.28.
Note thatR = 1.28 is only 4% additional redundancy than
the theoretical minimum, i.e. 1.28

1/(1−p) ≈ 1.04.
Similar behavior can be observed forp = 0.0199 and

0.0587, and settingR to be slightly above 1
1−p is sufficient.

A good heuristic to use in settingR is the following. Given a
probability of erasurep and window sizeW , the probability
that losses in any given round is completely masked is upper
bounded by

∑W (R−1)
x=0

(

RW
x

)

px(1−p)RW−x, i.e. there are no
more thanW (R − 1) losses in a round. Ensuring that this
probability is at least 0.8 has proven to be a good heuristic to
use in finding the appropriate value ofR.

C. Congestion Control

We showed that TCP/NC achieves a good performance in
lossy environment. This may raise concerns about masking
correlated losses from TCP; thus, disabling TCP’s congestion
control mechanism. We show that the network coding layer
masks random losses only, and allows TCP’s congestion
control to take affect when necessary.

Given a capacityC and erasure ratep, the available band-
width is C(1− p) Mbps. Given two flows, a fair allocation of
bandwidth should beC(1−p)

2 Mbps per flow. Note that this is
the available bandwidth, not theachieved bandwidth. As we
have seen, ifp > 0, TCP may not be able to use fully the avail-
able bandwidth. On the other hand, TCP/NC is able to use the
available bandwidth efficiently. With TCP/NC flows, there is
another parameter we need to consider: the redundancy factor
R. Since TCP/NC sendsR coded packets for each data packet,
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Fig. 14: TCP/NC forp = 0.0963
andC = 0.7 Mbps.
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Fig. 15: TCP/NC-TCP/NC forp = 0.0963 with congestion (C = 0.9 Mbps,R = 1.2,
Wmax = 50).

TABLE I: The average simulated or predicted long-term throughput of TCP and TCP/NC in megabits per second (Mbps).
‘NC0’, ’NC1’, ‘TCP0’, ‘TCP1’ are average throughput achieved in the NS-2 simulations (with the corresponding ‘R’). ‘TCP/NC
analysis’ is calculated using Equation (20) with⌊n · SRTT ⌋ = 1000. ‘TCP analysis’ is computed using Equation (16).

p TCP/NCSRTT R NC0 NC1 TCP/NC analysis TCP0 TCP1 TCP analysis
0 0.8256 1 0.5080 0.5057 0.4819 0.5080 0.5057 0.5000

0.0199 0.8260 1.03 0.4952 0.4932 0.4817 0.1716 0.1711 0.0667
0.0587 0.8264 1.09 0.4926 0.4909 0.4814 0.0297 0.0298 0.0325
0.0963 0.8281 1.13 0.4758 0.4738 0.4804 0.0149 0.0149 0.0220
0.1855 0.8347 1.29 0.4716 0.4782 0.4766 0.0070 0.0070 0.0098

the achievable bandwidth ismin{C(1−p), CR}Mbps; if shared
among two flows fairly, we expect12 min{C(1−p), CR} Mbps
per coded flow. Note that, ifR is chosen appropriately (i.e.
slightly above 1

1−p ), then TCP/NC can achieve rate close to
C(1 − p), which is optimal.

We show that multiple TCP/NC flows share the bandwidth
fairly. We consider two flows (NC0, NC1) withWmax = 50,
R = 1.2, and p = 0.0963. If there is no congestion,
each flow would achieve approximately 0.5 Mbps. However,
we set C = 0.7 Mbps. The two flows should achieve
1
2 min{0.7(1 − 0.0963), 0.71.2} = 0.2917 Mbps. We observe in
Figure 14 that NC0 and NC1 achieve 0.2878 Mbps and 0.2868
Mbps, respectively. Note thatC(1−p)

2 = 0.3162; thus, NC0 and
NC1 is near optimal even thoughR = 1.2 > 1

1−p = 1.106.
For our next simulations, we setC = 0.9 Mbps,Wmax =

50, p = 0.0963, andR = 1.2. Furthermore, we assume that
NC0 starts at 0s, and runs for 1000s, while NC1 starts at time
350s and ends at time 650s. Before NC1 enters, NC0 should
be able to achieve a throughput of 0.5 Mbps; however, when
NC1 starts its connection, there is congestion, and both NC0
and NC1 have to react to this. Figure 15 shows that indeed
this is true. We observe that when NC1 starts its connection,
both NC0 and NC1 shares the bandwidth equally (0.3700
and 0.3669 Mbps, respectively). The achievable bandwidth
predicted bymin{C(1 − p), C

R} is 0.75 Mbps (or 0.375
Mbps per flow). Note that both NC0 and NC1 maintains
its maximum window size of 50. Instead, NC0 and NC1
experience a longer RTT, which naturally translates to a lower
throughput given the sameWmax.

D. Comparison to the analytical model

Finally, we examine the accuracy of our analytical model in
predicting the behavior of TCP and TCP/NC. First, note that
our analytical model of window evolution (shown in Equation

(17) and Figure 5) demonstrates the same trend as that of
the window evolution of TCP/NC NS-2 simulations (shown in
Figure 10). Second, we compare the actual NS-2 simulation
performance to the analytical model. This is shown in Table I.
We observe that Equations (19) and (17) predict well the trend
of TCP/NC’s throughput and window evolution, and provides
a good estimate of TCP/NC’s performance. Furthermore, our
analysis predicts the average TCP behavior well. In Table I,we
see that Equation (16) is consistent with the NS-2 simulation
results even for large values ofp. Therefore, both simulations
as well as analysis support that TCP/NC is resilient to erasures;
thus, better suited for reliable transmission over unreliable
networks, such as wireless networks.

VII. M ODEL FORNETWORK COST

Mobile data traffic has been growing at an alarming rate
with some estimating that it will increase more than 25-folds
in the next five years [26]. In order to meet such growth,
there has been an increasing effort to install and upgrade
the current networks. As shown in Figure 16, mobile service
providers often install more infrastructure (e.g. more base
stations) in areas which already have full coverage. The new
infrastructure is to provide more bandwidth, which would lead
to higher quality of experience to users. However, this increase
in bandwidth comes at a significant energy cost as each base
station has been shown to use 2-3 kilowatts (kW) [27]. The
sustainability and the feasibility of such rapid development
have been brought to question as several trends indicate that
the technology efficiency improvements may not be able to
keep pace with the traffic growth [27].

In the subsequent sections, we use the results from Sections
IV, V, and VI to show that TCP/NC allows a better use of the
base stations installed and can improve the goodput without
any additional base stations. Improving the goodput with the



same or a fewer number of base stations implies reduction
in energy cost, operational expenses, capital expenses, and
maintenance cost for the network provider. The results in this
paper can also be understood as being able to serve more users
or traffic growth with the same number of base stations. This
may lead to significant cost savings, and may be of interest
for further investigation.

A. Model

Consider a network withN users. We assume that theseN
users are in an area such that a single base station can cover
them as shown in Figure 16. If the users are far apart enough
that a single base station cannot cover the area, then more
base stations are necessary; however, we do not consider the
problem of coverage.

The network provider’s goal is to provide afair service
to any user that wishes to start a transaction. Here, by fair,
we mean thatevery user is expected to be allocated the
same average bandwidth, denoted asB Mbps. The network
provider wishes to have enough network resources, measured
in number of base stations, so that any user that wishes to start
a transaction is able to join the network immediately and is
given an average bandwidth ofB Mbps. We denoteT to be
the throughput seen by the user. Note thatT ≤ B.

We denoteNbs to be the number of base stations needed
to meet the network provider’s goal. We assume that every
base station can support at mostBmax Mbps (in bandwidth)
and at mostNmax active users simultaneously. In this paper,
we assume thatBmax = 300 Mbps andNmax = 200. As
previously, we denotep to be the probability of packet loss in
the network, andRTT to be the round-trip time.

A user is active if the user is currently downloading a
file; idle otherwise. A user decides to initiate a transaction
with probability q at each time slot. Once a user decides to
initiate a transaction, a file size off bits is chosen randomly
according to a probability distributionQf . We denoteµf to
be the expected file size, and the expected duration of the
transaction to be∆ = µf/T seconds. If the user is already
active, then the new transaction is added to the user’s queue.
If the user has initiatedk transactions, the model of adding
the jobs into the user’s queue is equivalent to splitting the
throughputT to k transactions (each transaction achieves a
throughput ofT/k Mbps).

VIII. A NALYSIS OF THE NUMBER OF BASE STATIONS

We analyzeNbs needed to supportN users given bandwidth
B and throughputT. We first analyzeP (∆, q), the probability
that a user is active at any given point in time. GivenP (∆, q),
we compute the expected number of active users at any given
point in time andNbs needed to support these active users.

To deriveP (∆, q), we use the Little’s Law. For a stable
system, the Little’s Law states that the average number of jobs
(or transactions in our case) in the user’s queue is equal to the
product of the arrival rateq and the average transaction time∆.
When∆p ≥ 1, we expect the user’s queue to have on average
at least one transaction in the long run. This implies that the

Fig. 16: As number of users in a given area grows, a service
provider may add additional base stations not for coverage but
for bandwidth. As red users join the network, a second base
station may be necessary; as green users join the network, a
third base station may become necessary in order to maintain
a certain level of quality of service.

user is expected to be active at all times. When∆p < 1,
we can interpret the result from Little’s Law to represent the
probability that a user is active. For example, if∆p = 0.3,
the user’s queue is expected to have 0.3 transactions at any
given point in time. This can be understood as the user being
active for 0.3 fraction of the time. Note that when the systemis
unstable, the long term average number of uncompleted jobs
in the user’s queue may grow unboundedly. In an unstable
system, we assume that in the long term, a user is active with
probability equal to one.

Therefore, we can state the following result forP (∆, q).

P (∆, q) = min{1,∆q} = min

{

1,
µf

T
· q

}

. (21)

Given P (∆, q), the expected number of active users is
NP (∆, q). We can now characterize the expected number of
base stations needed as

Nbs = NP (∆, q) ·max

{

B

Bmax
,

1

Nmax

}

. (22)

In Equation (22),max { B
Bmax

, 1
Nmax

} represents the amount
of base stations’ resources (the maximum loadBmax or the
amount of activityNmax) each active user consumes. The
value ofNbs from Equation (22) may be fractional, indicating
that actually⌈nbs⌉ base stations are needed.

Note the effect ofB and T. As shown in Equation (22),
increasingB incurs higher cost while increasingT reduces the
cost. Therefore, when a network provider dedicates resources
to increaseB, the goal of the network provider is to increase
T proportional toB.

IX. B EST CASE SCENARIO

In an ideal scenario, the user should see a throughputT = B.
In this section, we analyze this best case scnario withT =
B. This assumption can be considered as ignoring the effect
of losses in the network; thus, TCP or TCP/NC can achieve
the full bandwidth available. Once we understand the optimal
scenario, we then consider the behavior of TCP and TCP/NC
in Section X.

A. Analytical Results

In Figures 17a and 17b, we plot Equation (22) withµf =
3.2 MB and µf = 5.08 MB for varying values ofq. As
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Fig. 17: The values ofNbs from Equation (22) withN = 1000
and varyingq andB.

B increases, it does not necessarily lead to increase inNbs.
Higher B results in users finishing their transactions faster,
which in turn allows the resources dedicated to these users to
be released to serve other requests or transactions. As a result,
counter-intuitively, we may be able to maintain a higherB with
the same or a fewer number of base stations than we would
have needed for a lowerB. For example, in Figure 17a, when
B < 1 Mbps, the rate of new requests exceeds the rate at which
the requests are handled; resulting in an unstable system. As a
result, most users are active all the time, and the system needs

n
Nmax

= 1000
200 = 5 base stations.

There are many cases whereNbs is relatively constant
regardless ofB. For instance, considerq = 0.03 in Figure 17b.
The value ofNbs is approximately 4-5 throughout. However,
there is a significant difference in the way the resources
are used. WhenB is low, all users have slow connections;
therefore, the base stations are fully occupied not in bandwidth
but in the number of active users. On the other hand, whenB is
high, the base stations are being used at full-capacity in terms
of bandwidth. As a result, although the system requires the
same number of base stations, users experience better quality
of service and users’ requests are completed quickly.

Whenq andB are high enough, it is necessary to increase
Nbs. As demand exceeds the network capacity, it becomes
necessary to add more infrastructure to meet the growth in
demand. For example, considerq = 0.04 in Figure 17b. In
this case, asB increasesNbs increases.

B. Simulation Results

We present MATLAB simulation results to verify our anal-
ysis results in Section IX-A. We assume that at every 0.1
second, a user may start a new transaction with probabilityq

10 .
This was done to give a finer granularity in the simulations;
the results from this setup is equivalent to having users start a
new transaction with probabilityq every second. We assume
that there areN = 1000 users. For each iteration, we simulate
the network for 1000 seconds. Each plot is averaged over 100
iterations.

Once a user decides to start a transaction, a file size is
chosen randomly in the following manner. We assume there
are four types of files:fdoc = 8KB (a document),fimage
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Fig. 18: Average value ofNbs over 100 iterations withN =
1000 and varyingq andB.

= 1MB (an image),fmp3 = 3 MB (a mp3 file), fvideo =
20 MB (a small video), and are chosen with probability
qdoc, qimage, qmp3, and qvideo, respectively. In Figure 18a,
we set [qdoc, qimage, qmp3, qvideo] = [0.3, 0.3, 0.3, 0.1]. This
results inµf = 3.2 MB as in Figure 17a. In Figure 18b, we
set [qdoc, qimage, qmp3, qvideo] = [0.26, 0.27, 0.27, 0.2], which
givesµf = 5.08 MB as in Figure 17b.

The simulation results show close concordance to our anal-
ysis. Note that the values in Figures 18a and 18b are slightly
greater than that of Figures 17a and 17b. This is because, in
the simulation, we round-up any fractionalNbs’s since the
number of base stations needs to be integral.

X. A NALYSIS FOR THENUMBER OF BASE STATIONS FOR

TCP/NCAND TCP

We now study the effect of TCP and TCP/NC’s behavior
(i.e. T ≤ B). We have shown that TCP/NC is robust against
erasures; thus, allowing it to maintain a high throughput
despite random losses. For example, if the network allows
for 2 Mbps per user and there is 10% loss rate, then the user
should see approximately2 · (1− 0.1) = 1.8 Mbps. Reference
[17] has shown, both analytically and with simulations, that
TCP/NC indeed is able to achieve throughput close to 1.8
Mbps in such a scenario while TCP fails to do so.

We use the model and analysis from Sections IV, V, and VI.
As in Section VI, we set the maximum congestion window,
Wmax, of TCP and TCP/NC to be 50 packets (with each packet
being 1000 bytes long), and their initial window size to be 1.
We considerRTT = 100 ms and varyingp from 0 to 0.05.
We note that, givenB andp, T ≤ B(1− p) regardless of the
protocol used.

Combining Equation (20) andTnc ≤ B(1 − p), we obtain
the values ofTnc for variousB, RTT , andp. In Figure 19a,
the values ofTnc plateaus onceB exceeds some value. This
is caused byWmax. Given Wmax and RTT , TCP/NC and
TCP both have a maximal throughput it can achieve. With
the parameters we are considering, the maximal throughput is
approximately 4 Mbps. Note that regardless ofp, all TCP/NC
flows achieve the maximal achievable rate. This shows that
TCP/NC can overcome effectively the erasures or errors in
the network, and provide a throughput that closely matches
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Fig. 19: The value ofTnc andTtcp againstB for varying values
of p. We setRTT = 100 ms.

the bandwidthB.
Combining Equation (16) andTtcp ≤ B(1− p), we obtain

the values ofTtcp for variousB, RTT , and p as shown in
Figure 19b. As in Figure 19a, the values ofTtcp are also
restricted byWmax. However, TCP achieves this maximal
throughput only whenp = 0. This is because, when there are
losses in the network, TCP is unable to recover effectively
from the erasures and fails to use the bandwidth dedicated
to it. For p > 0, Ttcp is not limited byWmax but by TCP’s
performance limitations in lossy wireless networks.

Using the results in Figure 19 and Equation (22), we can
obtain the number of base stationsNbs needed by both TCP
and TCP/NC as shown in Figures 20 and 21. TCP suffers
performance degradation asp increases; thus,Nbs increases
rapidly with p. Note that increasingB without being able to
increaseT leads to inefficient use of the network, and this is
clearly shown by the performance of TCP asB increases with
non-zero loss probability,p > 0.

However, for TCP/NC,Nbs does not increase significantly
(if any at all) whenp increases. As discussed in Section VIII,
TCP/NC is able to translate betterB into Tnc despitep > 0,
i.e.B ≈ Tnc. As a result, this leads to a significant reduction in
Nbs for TCP/NC compared to TCP. Note thatNbs for TCP/NC
is approximately equal to the values ofNbs in Section VIII
regardless of the value ofp. Since TCP/NC is resilient to
losses, the behavior ofTnc does not change as dramatically
againstp as that ofTtcp does. As a result, we observeNbs for
TCP/NC to reflect closely the values ofNbs seen in Section
VIII, which is the best case withB = T.

We observe a similar behavior for other values ofRTT
as we did forRTT = 100 ms. The key effect of the value
of RTT in the maximal achievable throughput. For example,
if Wmax is limited to 50, the maximal achievable throughput
is approximately 0.8 Mbps whenRTT = 500 ms, which is
much less than the the 4 Mbps achievable withRTT = 100
ms. As a result, forRTT = 500 ms, neitherTnc nor Ttcp
can benefit from the increase inB beyond 0.8 Mbps. Despite
this limitation, TCP/NC still performs better than TCP when
losses occur. When demand exceeds the maximal achievable

throughput,Nbs increases for both TCP/NC and TCP in the
same manner. We do not present the results for want of space.

XI. CONCLUSIONS

We have presented an analytical study and compared the
performance of TCP and TCP/NC. Our analysis characterizes
the throughput of TCP and TCP/NC as a function of erasure
probability, round-trip time, maximum window size, and the
duration of the connection. We showed that network coding,
which is robust against erasures and failures, can prevent
TCP’s performance degradation often observed in lossy net-
works. Our analytical model shows that TCP with network
coding has significant throughput gains over TCP. TCP/NC
is not only able to increase its window size faster but also
to maintain a large window size despite losses within the
network; on the other hand, TCP experiences window closing
as losses are mistaken to be congestion. Furthermore, NS-
2 simulations verify our analysis on TCP’s and TCP/NC’s
performance. Our analysis and simulation results both support
that TCP/NC is robust against erasures and failures. Thus,
TCP/NC is well suited for reliable communication in lossy
wireless networks.

In addition, we studied the number of base stationsNbs

needed to improve the throughput to the users. It may seem
that higher throughput necessarily increasesNbs. Indeed, if
there are enough demand (i.e. high throughput per connection,
many active users in the network, etc.), we eventually need
to increaseNbs. However, we show that this relationship is
not necessarily true. When the observed throughput by the
user is low, each transaction takes more time to complete
and each user stays in the system longer. This degrades the
user experience and delays the release of network resources
dedicated to the user. This is particularly important as the
number of active users each base station can support is limited
to the low hundreds. We observed that, given bandwidth
allocated a user, achieving low throughput may lead to a
significant increase inNbs and an ineffective use of the
network resources; while achieving high throughput may lead
to reduction inNbs. We showed that TCP/NC, which is more
resilient to losses than TCP, may better translate bandwidth to
throughput. Therefore, TCP/NC may lead to a better use of
the available network resources and reduce the number of base
stationsNbs needed to support users at a given throughput.
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