Skip to main content
Log in

Oblique Projection Matching Pursuit

  • Published:
Mobile Networks and Applications Aims and scope Submit manuscript

Abstract

Recent theory of compressed sensing (CS) tells us that sparse signals can be reconstructed from a small number of random samples. In reconstruction of sparse signals, greedy algorithms, such as the orthogonal matching pursuit (OMP), have been shown to be computationally efficient. In this paper, the performance of OMP is shown to be dependent on how well information of the underlying signals is preserved in the residual vector. Further, to improve the information preservation, we present a modification of OMP, called oblique projection matching pursuit (ObMP), which updates the residual in a oblique projection manor. Using the restricted isometric property (RIP), we build a solid yet very intuitive grasp of the more accurate phenomenon of ObMP. We also show from empirical experiments that the ObMP achieves improved reconstruction performance over the conventional OMP algorithm in terms of support detection ratio and mean squared error (MSE).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Donoho DL (2006) Compressed sensing. IEEE Trans Inf Theory 52(4):1289–1306

    Article  MathSciNet  MATH  Google Scholar 

  2. Candès EJ, Tao T (2005) Decoding by linear programming. IEEE Trans Inf Theory 51(12):4203–4215

    Article  MathSciNet  MATH  Google Scholar 

  3. Candès EJ, Romberg J, Tao T (2006) Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inf Theory 52(2):489–509

    Article  MathSciNet  MATH  Google Scholar 

  4. Mallat SG, Zhang Z (1993) Matching pursuits with time-frequency dictionaries. IEEE Trans Signal Process 41(12):3397–3415

    Article  MATH  Google Scholar 

  5. Pati YC, Rezaiifar R, Krishnaprasad PS (1993) Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition. In: Proceedings of 27th annual Asilomar conference signals, systems, and computers, vol 1. IEEE, Pacific Grove, pp 40–44

  6. Wang J, Shim B (2012) On the recovery limit of sparse signals using orthogonal matching pursuit. IEEE Trans Signal Process 60(9):4973–4976

    Article  MathSciNet  Google Scholar 

  7. Wang J, Kwon S, Shim B (2012) Generalized orthogonal matching pursuit. IEEE Trans Signal Process 60(12):6202–6216

    Article  MathSciNet  Google Scholar 

  8. Wen J, Zhu X, Li D (2013) Improved bounds on restricted isometry constant for orthogonal matching pursuit. Electron Lett 49(23):1487–1489

    Article  Google Scholar 

  9. Wang J (2015) Support recovery with orthogonal matching pursuit in the presence of noise. IEEE Trans Signal Process 63(21):5868–5877

    Article  MathSciNet  Google Scholar 

  10. Wang J, Kwon S, Li P, Shim B (2016) Recovery of sparse signals via generalized orthogonal matching pursuit: a new analysis. IEEE Trans Signal Process 64(4):1076–1089

    Article  MathSciNet  Google Scholar 

  11. Wang J, Shim B (2016) Exact recovery of sparse signals using orthogonal matching pursuit: how many iterations do we need? IEEE Trans Signal Process 64(16):4194–4202

    Article  MathSciNet  Google Scholar 

  12. Tropp JA (2004) Greed is good: algorithmic results for sparse approximation. IEEE Trans Inf Theory 50 (10):2231–2242

    Article  MathSciNet  MATH  Google Scholar 

  13. Candès EJ (2008) The restricted isometry property and its implications for compressed sensing. Comptes Rendus Mathematique 346(9–10):589–592

    Article  MathSciNet  MATH  Google Scholar 

  14. Li B, Shen Y, Wu Z, Li J (2015) Sufficient conditions for generalized orthogonal matching pursuit in noisy case. Signal Process 108:111–123

    Article  Google Scholar 

  15. Wen J, Li D, Zhu F (2015) Stable recovery of sparse signals via p -minimization. Appl Comput Harmon Anal 38(1):161–176

    Article  MathSciNet  MATH  Google Scholar 

  16. Needell D, Tropp JA (2009) CoSaMP: iterative signal recovery from incomplete and inaccurate samples. Appl Comp Harmonic Anal 26(3):301–321

    Article  MathSciNet  MATH  Google Scholar 

  17. Behrens R, Scharf L (1994) Signal processing applications of oblique projection operators. IEEE Trans Signal Process 42(6):1413–1424

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the institute for Information and Communications Technology Promotion Grant Funded by the Korean Government (MSIP) under Grant B0126-16-1017 and in part by the research professor program of Korea University, Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Wang.

Appendices

Appendix A: Proof of Proposition 1

Proof

Let Ω = T k∪Λ α . Then, the projection of y onto span (Φ Ω) can be given by

$$ \mathbf{P}_{\Omega} \mathbf{y} = \boldsymbol{\Phi}_{\Omega} \boldsymbol{\Phi}^{\dag}_{\Omega} \mathbf{y}. $$
(40)

Following the argument in [17], we can show that

$$\begin{array}{@{}rcl@{}} \mathbf{P}_{\Omega} \mathbf{y} = \boldsymbol{\Phi}_{T^{k}} (\mathbf{P}_{{\Lambda}_{\alpha}}^{\bot} \boldsymbol{\Phi}_{T^{k}})^{\dag} \mathbf{y} + \boldsymbol{\Phi}_{{\Lambda}_{\alpha}} (\mathbf{P}_{T^{k}}^{\bot} \boldsymbol{\Phi}_{{\Lambda}_{\alpha}})^{\dag} \mathbf{y}. \end{array} $$
(41)

Since P Ω y lies in the column span of \(\boldsymbol {\Phi }_{\Omega } = [\boldsymbol {\Phi }_{T^{k}}, \boldsymbol {\Phi }_{{\Lambda }_{\alpha }}]\) where \(\boldsymbol {\Phi }_{T^{k}}\) and \(\boldsymbol {\Phi }_{{\Lambda }_{\alpha }}\) are disjoint, it has a unique linear representation with \(\boldsymbol {\Phi }_{T^{k}}\) and \(\boldsymbol {\Phi }_{{\Lambda }_{\alpha }}\). That is,

$$\begin{array}{@{}rcl@{}} \mathbf{P}_{\Omega} \mathbf{y} &=& [\boldsymbol{\Phi}_{T^{k}}, \boldsymbol{\Phi}_{{\Lambda}_{\alpha}}] \left[ \begin{array}{c} \widehat{\mathbf{x}}_{T^{(k)}}\\ \widehat{\mathbf{x}}_{\Lambda} \end{array} \right] \\ &=& \boldsymbol{\Phi}_{T^{k}} \mathbf{x}_{T^{k}}^{k} + \boldsymbol{\Phi}_{{\Lambda}_{\alpha}} \mathbf{x}_{{\Lambda}_{\alpha}}^{k}. \end{array} $$
(42)

From Eqs. 41 and 42, we have

$$ \mathbf{x}_{T^{k}}^{k} = (\mathbf{P}_{{\Lambda}_{\alpha}}^{\bot} \boldsymbol{\Phi}_{T^{k}})^{\dag}) \mathbf{y}. $$
(43)

Furthermore, from Table 1, the residual vector of ObMP becomes

$$\begin{array}{@{}rcl@{}} \mathbf{r}_{1}^{k} & = & \mathbf{y} - \boldsymbol{\Phi}_{T^{k}} \mathbf{x}^{k}_{T^{k}} \\ & = & \mathbf{y} - \boldsymbol{\Phi}_{T^{k}} (\mathbf{P}_{{\Lambda}_{\alpha}}^{\bot} \boldsymbol{\Phi}_{T^{k}})^{\dag}) \mathbf{y} \\ & = & (\mathbf{I} - \boldsymbol{\Phi}_{T^{k}} (\mathbf{P}_{{\Lambda}_{\alpha}}^{\bot} \boldsymbol{\Phi}_{T^{k}})^{\dag}) \mathbf{y}, \end{array} $$
(44)

which completes the proof. □

Appendix B: Proof of Proposition 2

Proof

First, for the OMP algorithm, \(\| \mathbf {r}^{k} - \mathbf {r}_{0}^{k} \|_{2}\) can be lower bounded as

$$\begin{array}{@{}rcl@{}} \| \mathbf{r}^{k} - \mathbf{r}_{0}^{k} \|_{2} & = & \| \mathbf{P}_{T^{k}} \boldsymbol{\Phi}_{T \backslash T^{k}} \mathbf{x}_{T \backslash T^{k}} \|_{2} \\ & = & \| \boldsymbol{\Phi}_{T^{k}} (\boldsymbol{\Phi}^{\prime}_{T^{k}} \boldsymbol{\Phi}_{T^{k}})^{- 1} \boldsymbol{\Phi}^{\prime}_{T^{k}} \boldsymbol{\Phi}_{T \backslash T^{k}} \mathbf{x}_{T \backslash T^{k}} \|_{2} \\ & = & \| (\boldsymbol{\Phi}^{\dag}_{T^{k}})^{\prime} \boldsymbol{\Phi}^{\prime}_{T^{k}} \boldsymbol{\Phi}_{T \backslash T^{k}} \mathbf{x}_{T \backslash T^{k}} \|_{2} \\ & \overset{(a)}{\geq} & \frac{\| \boldsymbol{\Phi}^{\prime}_{T^{k}} \boldsymbol{\Phi}_{T \backslash T^{k}} \mathbf{x}_{T \backslash T^{k}} \|_{2}}{\sqrt{1 + \delta_{K}}} \\ & {\geq} & \frac{\sigma_{\min} (\boldsymbol{\Phi}_{T^{k}}) \| \boldsymbol{\Phi}_{T \backslash T^{k}} \mathbf{x}_{T \backslash T^{k}} \|_{2}}{\sqrt{1 + \delta_{K}}} \\ & {\geq} & \sqrt{\frac{1 - \delta_{K}}{1 + \delta_{K}}} \| \boldsymbol{\Phi}_{T \backslash T^{k}} \mathbf{x}_{T \backslash T^{k}} \|_{2} \\ & \overset{\text{RIP}}{\geq} & \frac{1 - \delta_{K}}{\sqrt{1 + \delta_{K}}} \| \mathbf{x}_{T \backslash T^{k}} \|_{2}. \end{array} $$
(45)

where (a) is from Lemma 5.

We next consider the ObMP algorithm. \(\| \mathbf {r}_{1}^{k} - \mathbf {r}_{0}^{k} \|_{2}\) can be upper bounded as follows:

$$\begin{array}{@{}rcl@{}} {\| \mathbf{r}_{1}^{k} \,-\, \mathbf{r}_{0}^{k} \|_{2}}\!\!& = & \| \mathbf{Q}_{T^{k}} \boldsymbol{\Phi}_{T \backslash T^{k}} \mathbf{x}_{T \backslash T^{k}} \|_{2} \\ & \overset{(20)}{=} & \| \boldsymbol{\Phi}_{T^{k}} (\mathbf{P}_{{\Lambda}_{\alpha}}^{\bot} \boldsymbol{\Phi}_{T^{k}})^{\dag} \boldsymbol{\Phi}_{T \backslash T^{k}} \mathbf{x}_{T \backslash T^{k}} \|_{2} \\ & \overset{\text{RIP}}{\leq} & \sqrt{1 + \delta_{K}} \| (\mathbf{P}_{{\Lambda}_{\alpha}}^{\bot} \boldsymbol{\Phi}_{T^{k}})^{\dag} \boldsymbol{\Phi}_{T \backslash T^{k}} \mathbf{x}_{T \backslash T^{k}} \|_{2} \\ & \overset{(a)}{\leq} &\! \frac{\sqrt{1 + \delta_{K}}}{1 - \delta_{K}} \| \boldsymbol{\Phi}^{\prime}_{T^{k} \backslash {\Lambda}_{\alpha}} \mathbf{P}_{{\Lambda}_{\alpha}}^{\bot} \boldsymbol{\Phi}_{T \backslash (T^{k} \cup {\Lambda}_{\alpha})} \mathbf{x}_{T \backslash (T^{k} \cup {\Lambda}_{\alpha})} \|_{2} \\ & \overset{(b)}{\leq} & \frac{\delta_{K + \lceil \alpha K \rceil} \sqrt{1 + \delta_{K}}}{1 - \delta_{K}} \| \mathbf{x}_{T \backslash (T^{k} \cup {\Lambda}_{\alpha})} \|_{2} \\ & \overset{(c)}{\leq} & \frac{\delta_{2K} \sqrt{1 + \delta_{K}}}{1 - \delta_{K}} \| \mathbf{x}_{T \backslash (T^{k} \cup {\Lambda}_{\alpha})} \|_{2}, \end{array} $$
(46)

where (a) is from Lemma 3, (b) is due to Lemma 4, and (c) is because α∈(0,1].

The proof is now complete. □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Wang, F., Dong, Y. et al. Oblique Projection Matching Pursuit. Mobile Netw Appl 22, 377–382 (2017). https://doi.org/10.1007/s11036-016-0773-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11036-016-0773-x

Keywords

Navigation