Skip to main content
Log in

Context Dissemination for Dynamic Urban-Scale Applications

  • Published:
Mobile Networks and Applications Aims and scope Submit manuscript

Abstract

Realising the “smart city” vision requires applications that can efficiently disseminate context among millions of potentially mobile nodes. Numerous context dissemination algorithms exist based on flooding-, gossip- and overlay-based approaches. However, due to their message transmission (flooding, gossip) or control (overlay) overhead, they cannot support the amount of mobile nodes envisaged in urban-scale scenarios. This paper describes Adaptive Context Tries (ACT), a decentralised context dissemination middleware that balances message transmission and control overhead to support urban-scale context-aware applications. ACT achieves scalability using a dynamically constructed virtual overlay, structured as a retrieval tree (trie) on node identifiers (IDs), avoiding continuous overlay rebuilds due to mobility or nodes changes by removing the need for subscriptions. Through formal analysis and extensive large-scale simulations we show that unlike existing context dissemination algorithms ACT can handle dynamic context requirements in urban-scale scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. This typically takes the form of a network address of some kind, depending on the underlying network type. For example, an IPv4 or IPv6 address and an UDP port number

References

  1. Ali S, Rizzo G, Marsan MA, Mancuso V (2014) Impact of mobility on the performance of context-aware applications using floating content. In: Context-aware systems and applications. Springer, pp 198–208

  2. Arnaboldi V, Conti M, Delmastro F (2014) Cameo: a novel context-aware middleware for opportunistic mobile social networks. Pervasive Mob Comput 11:148–167

    Article  Google Scholar 

  3. Augustine J, Pandurangan G, Robinson P, Roche S, Upfal E (2015) Enabling robust and efficient distributed computation in dynamic peer-to-peer networks. In: IEEE 56th annual symposium on foundations of computer science (FOCS), 2015. IEEE, pp 350–369

  4. Banno R, Takeuchi S, Takemoto M, Kawano T, Kambayashi T, Matsuo M (2014) A distributed topic-based pub/sub method for exhaust data streams towards scalable event-driven systems. In: Computer software and applications conference (COMPSAC), 2014 IEEE 38th annual, IEEE, pp 311–320

  5. Boldrini C, Conti M, Passarella A (2008) Exploiting user’s social relations to forward data in opportunistic networks: the hibop solution. Pervasive Mob Comput 4(5):633–657

    Article  Google Scholar 

  6. Calabrese F, Ferrari L, Blondel VD (2015) Urban sensing using mobile phone network data: a survey of research. ACM Comput Surv (CSUR) 47(2):25

    Google Scholar 

  7. Casanova H, Legrand A, Quinson M (2008) Simgrid: a generic framework for large-scale distributed experiments. In: Tenth international conference on computer modeling and simulation, 2008. UKSIM 2008, IEEE, pp 126–131

  8. Chen P, Sen S, Pung HK, Wong WC (2013) Mpsg: a generic context management framework in mobile spaces. In: Proceedings of the 8th international conference on body area networks. ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), pp 112–115

  9. Chen P, Sen S, Pung HK, Xue W, Wong WC (2012) A context management framework for context-aware applications in mobile spaces. International Journal of Pervasive Computing and Communications 8 (2):185–210

    Article  Google Scholar 

  10. Ercoli S, Bertini M, Del Bimbo A (2015) Compact hash codes and data structures for efficient mobile visual search. In: IEEE international conference on multimedia & expo workshops (ICMEW), 2015, IEEE, pp 1–6

  11. Fall K (2003) A delay-tolerant network architecture for challenged internets. In: Proceedings of the 2003 conference on applications, technologies, architectures, and protocols for computer communications. ACM, pp 27–34

  12. Fanelli M, Foschini L, Corradi A, Boukerche A (2014) Self-adaptive context data management in large-scale mobile systems. IEEE Trans Comput 63(10):2549–2562

    Article  MathSciNet  Google Scholar 

  13. Fredkin E (1960) Trie memory. Commun ACM 3(9):490–499

    Article  Google Scholar 

  14. Gu T, Pung HK, Zhang DQ (2005) A service-oriented middleware for building context-aware services. J Netw Comput Appl 28(1):1–18

    Article  Google Scholar 

  15. Hasan S, Curry E (2015) Thingsonomy: tackling variety in internet of things events. IEEE Internet Computing 19(2):10–18

    Article  Google Scholar 

  16. Hoepman J-H (2014) Privacy design strategies. In: ICT systems security and privacy protection. Springer, pp 446–459

  17. Hsu B-JP, Ottaviano G (2013) Space-efficient data structures for top-k completion. In: Proceedings of the 22nd international conference on world wide web. International World Wide Web Conferences Steering Committee, pp 583–594

  18. Hu R, Sopena J, Arantes L, Sens P, Demeure I (2013) Efficient dissemination algorithm for scale-free topologies. In: 42nd international conference on parallel processing (ICPP), 2013, IEEE, pp 310–319

  19. Kermarrec A-M, Triantafillou P (2013) Xl peer-to-peer pub/sub systems. ACM Comput Surv (CSUR) 46 (2):16

    Article  Google Scholar 

  20. Lee U, Zhou B, Gerla M, Magistretti E, Bellavista P, Corradi A (2006) Mobeyes: smart mobs for urban monitoring with a vehicular sensor network. IEEE Wirel Commun 13(5):52–57

    Article  Google Scholar 

  21. Lopes J, Gusmão M, Duarte C, Davet P, Souza R, Pernas A, Yamin A, Geyer C (2014) Toward a distributed architecture for context awareness in ubiquitous computing. J Appl Commun Res 3(1):19–33

    Google Scholar 

  22. Mannweiler C, Simoes J, Moltchanov B (2010) Context-aware smart environments enabling new business models and services. In: Kaleidoscope: beyond the internet? – innovations for future networks and services, 2010 ITU-t. IEEE. pp 1–7

  23. Manzoor A, Truong H-L, Dustdar S (2014) Quality of context: models and applications for context-aware systems in pervasive environments. Knowl Eng Rev 29(02):154–170

    Article  Google Scholar 

  24. Medvedev A, Zaslavsky A, Khoruzhnikov S, Grudinin V (2015) Reporting road problems in smart cities using openiot framework. In: Interoperability and open-source solutions for the internet of things. Springer, pp 169–182

  25. Miettinen M, Heuser S, Kronz W, Sadeghi A-R, Asokan N (2014) Conxsense: automated context classification for context-aware access control. In: Proceedings of the 9th ACM symposium on information, computer and communications security. ACM, pp 293–304

  26. Moreno MV, Zamora MA, Skarmeta AF (2014) User-centric smart buildings for energy sustainable smart cities. Transactions on Emerging Telecommunications Technologies 25(1):41–55

    Article  Google Scholar 

  27. Morris A, Bouroche M, Cahill V (2014) Urban scale dissemination in mobile pervasive computing environments. PECCS 2014:18

    Google Scholar 

  28. Morris A, Patsakis C, Cahill V, Bouroche M (2015) Snapcab: urban scale context-aware smart transport using adaptive context tries. In: 4th international conference on context-aware systems and applications. Springer

  29. Morris A, Patsakis C, Dragone M, Manzoor A, Cahill V, Bouroche M (2015) Urban scale context dissemination in the internet of things: challenge accepted. In: 9th international conference on next generation mobile applications, services and technologies, 2015. IEEE, pp 84–89

  30. Morris A, Patsakis C, Dragone M, Manzoor A, Cahill V, Bouroche M (2015) Urban scale context dissemination in the internet of things: challenge accepted. In: 9Th international conference on next generation mobile applications, services and technologies. IEEE

  31. Musolesi M, Mascolo C (2009) Car: context-aware adaptive routing for delay-tolerant mobile networks. IEEE Trans Mob Comput 8(2):246–260

    Article  Google Scholar 

  32. Nabeel M, Appel S, Bertino E, Buchmann A (2013) Privacy preserving context aware publish subscribe systems. In: Network and system security. Springer, pp 465–478

  33. Perera C, Zaslavsky A, Christen P, Compton M, Georgakopoulos D (2013) Context-aware sensor search, selection and ranking model for internet of things middleware. In: IEEE 14th international conference on mobile data management (MDM), 2013, vol 1. IEEE, pp 314–322

  34. Perera C, Zaslavsky A, Christen P, Georgakopoulos D (2014) Context aware computing for the internet of things: a survey. IEEE Commun Surv Tutorials 16(1):414–454

    Article  Google Scholar 

  35. Perera C, Zaslavsky A, Christen P, Georgakopoulos D (2014) Sensing as a service model for smart cities supported by internet of things. Transactions on Emerging Telecommunications Technologies 25(1):81–93

    Article  Google Scholar 

  36. Ramparany F, Galan Marquez F, Soriano J, Elsaleh T (2014) Handling smart environment devices, data and services at the semantic level with the fi-ware core platform. In: IEEE international conference on big data (big data), 2014. IEEE, pp 14–20

  37. Silva AP, Burleigh S, Hirata CM, Obraczka K (2015) A survey on congestion control for delay and disruption tolerant networks. Ad Hoc Netw 25:480–494

    Article  Google Scholar 

  38. Stingl D, Richerzhagen B, Zollner F, Gross C, Steinmetz R (2013) Peerfactsim. kom: take it back to the streets. In: International conference on high performance computing and simulation (HPCS), 2013. IEEE, pp 80–86

  39. Villaverde BC, De Paz Alberola R, Jara AJ, Fedor S, Das SK, Pesch D (2014) Service discovery protocols for constrained machine-to-machine communications. IEEE Commun Surv Tutorials 16(1):41–60

    Article  Google Scholar 

  40. Woodruff DP, Zhang Q (2013) When distributed computation is communication expensive. In: Distributed computing. Springer, pp 16–30

  41. Zhang L, Zhang Y, Tang J, Lu K, Tian Q (2013) Binary code ranking with weighted hamming distance. In: IEEE conference on computer vision and pattern recognition (CVPR), 2013. IEEE, pp 1586–1593

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alistair Morris.

Additional information

This papers denotes an extention of our previous work with ACT that extends on findings in [27, 28] and [29].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morris, A., Patsakis, C., Bouroche, M. et al. Context Dissemination for Dynamic Urban-Scale Applications. Mobile Netw Appl 22, 305–317 (2017). https://doi.org/10.1007/s11036-017-0809-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11036-017-0809-x

Keywords

Navigation