Skip to main content
Log in

Dynamic Provider Selection & Power Resource Management in Competitive Wireless Communication Markets

  • Published:
Mobile Networks and Applications Aims and scope Submit manuscript

Abstract

In this paper the combined problem of Wireless Internet Service Provider (WISP) selection by the mobile customers and corresponding power allocation is treated, in order to meet user expectations and satisfaction in a competitive wireless communication market with several co-existing WISPs. Each WISP is characterized by a price and service-based reputation, formed based on its adopted pricing policy and its success to satisfy customers’ Quality of Service (QoS) prerequisites, the latter implicitly characterizing the specific WISP’s market penetration factor. The customers who act as learning automata selecting the most appropriate WISP adopt a machine learning based mechanism. The optimal power allocation is concluded from the maximization problem of each user’s utility function, which is confronted as a non-cooperative game among users and its Nash equilibrium is determined. The output of the resource allocation problem feeds the learning system in order to build knowledge and conclude to the optimal provider selection. A two-stage iterative algorithm is proposed in order to realize the machine learning provider selection and the distributed resource allocation. The performance of the proposed approach is evaluated via modeling and simulation and its superiority against other state of the art approaches is illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Cisco (2016) Cisco visual networking index: Global mobile data traffic forecast update, 2015–2020. Cisco, Tech. Rep

  2. Ericsson (2016) Mobility report on the pulse of the networked society. Ericsson AB, Tech. Rep

    Google Scholar 

  3. Shakkotai S, Srikant R, Ozdaglar A, Acemoglu D (2008) The price of simplicity. IEEE J on Sel Areas in Comm 26(7):1269–1276

    Article  Google Scholar 

  4. Hande P, Chiang M, Calderbank R, Zhang J (2010) Pricing under constraints in access networks: revenue maximization and congestion management. In: Proceedings IEEE INFOCOM, pp. 1–9

  5. COMCAST. About excessive use of data.' [Online]. Available: http://customer.comcast.com/help-and-support/internet/data-usage-what-are-the-different-plans-launching

  6. Chau CK, Wang Q, Chiou DM (2010) On the viability of Paris metro pricing for communication and service networks. In: Proceedings IEEE INFOCOM, pp. 1–9

  7. Delgrossi L, Ferrari D (1999) Charging schemes for reservation-based networks. Tel Syst 11(1):127–137

    Article  Google Scholar 

  8. Loiseau P, Schwartz G, Musacchio J, Amin S (2011) Incentive schemes for internet congestion management: raffles versus time-of-day pricing. In: Proceedings of IEEE Allerton Conference, pp. 103–110

  9. Mackie-Mason JK, Murphy L, Murphy J (1998) Responsive pricing in the internet. The MIT Press, Cambridge, Internet Economics, pp 279–303

    Google Scholar 

  10. Ha S, Sen S, Joe-Wong C, Im Y, Chiang M (2012) TUBE: time-dependent pricing for mobile data. In: Proceedings. of ACM SIGCOMM, pp. 247–258

  11. Gibbens RJ, Kelly FP (1999) Resource pricing and the evolution of congestion control. Automatica 35(12):1969–1985

    Article  MathSciNet  MATH  Google Scholar 

  12. El-Sayed MM, Ibrahim AS, Khairy MM (2016) Power allocation strategies for non-orthogonal multiple access. In: International Conference on Selected Topics in Mobile & Wireless Networking (MoWNeT), pp. 1–6

  13. Liu F, Mähönen P, Petrova M (2015) Proportional fairness-based user pairing and power allocation for non-orthogonal multiple access. In: Proceedings 26th Annual Int. Symp. on Personal, Indoor, and Mobile Radio Communications (PIMRC), pp. 1127–1131

  14. Lei L, Yuan D, Ho CK, Sun S (2015) Joint optimization of power and channel allocation with non-orthogonal multiple access for 5G cellular systems. In: Proceedings IEEE Global Communications Conference (GLOBECOM), pp. 1–6

  15. Tsiropoulou EE, Katsinis G, Papavassiliou S (2012) Distributed uplink power control in multi-service wireless networks via a game theoretic approach with convex pricing. IEEE Trans Parallel Distrib Syst 23(1):61–68

    Article  Google Scholar 

  16. Rasti M, Sharafat AR, Seyfe B (2009) Pareto-efficient and goal-driven power control in wireless networks: a game-theoretic approach with a novel pricing scheme. IEEE/ACM Trans on Networking 17(2):556–569

    Article  Google Scholar 

  17. Tsiropoulou EE, Vamvakas P, Katsinis G, Papavassiliou S (2015) Combined power and rate allocation in self-optimized multi-service two-tier femtocell networks. Elsevier Comp Comm 72:38–48

    Article  Google Scholar 

  18. Yates RD (1995) A framework for uplink power control in cellular radio systems. IEEE J on Sel Areas of Comm 13(7):1341–1347

    Article  Google Scholar 

  19. Apostol TM (1967) Calculus, 2nd ed., Vol. 1: One-Variable Calculus, with an Introduction to Linear Algebra, Blaisdell

  20. Saraydar CU, Mandayam NB, Goodman DJ (2002) Efficient power control via pricing in wireless data networks. IEEE Trans on Comm 50(2):291–303

    Article  Google Scholar 

  21. Calabuig D, Monserrat JF, Martín-Sacristán D, Cardona N (2010) Joint dynamic resource allocation for QoS provisioning in multi-access and multi-service wireless systems. Springer Mobile Net. Appl. 15:627

    Article  Google Scholar 

  22. Katsinis G, Tsiropoulou EE, Papavassiliou S (2016) Joint resource block and power allocation for interference Management in Device to device underlay cellular networks: a game theoretic approach. Springer Mobile Net Appl. doi:10.1007/s11036-016-0764-y

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Symeon Papavassiliou.

Appendix A – Proof of Theorem 1

Appendix A – Proof of Theorem 1

Towards proving the quasi-concavity of mobile customer’s utility function, we examine the sign of its second order derivative with respect to p i . Considering the real time users, we have:

$$ \frac{\partial^2{U}_i^{NET}}{\partial {p_i}^2}= g\left({\gamma}_i\right)+ h\left({\gamma}_i\right)-{ce}^{p_i} $$
(6)

where \( g\left({\gamma}_i\right)=\frac{2 R}{{p_i}^3}{\left(1-{e}^{- A{\gamma}_i}\right)}^{M-1}\left[-{ M Ae}^{- A{\gamma}_i}{\gamma}_i+1-{e}^{- A{\gamma}_i}\right] \) and \( h\left({\gamma}_i\right)=\frac{{ M A}^2 R}{{p_i}^3}{\left(1-{e}^{- A{\gamma}_i}\right)}^{M-2}{e}^{- A{\gamma}_i}{\gamma_i}^2\left({ M e}^{- A{\gamma}_i}-1\right) \). We examine the sign of the individual terms of eq. (6). Considering the function g(γ i ), we apply the Bolzano theorem, which is an important specialization of the Intermediate Value Theorem [19]. For \( {\gamma}_i=\frac{ \ln M}{A} \), we have: \( g\left(\frac{ \ln M}{A}\right)=- \ln M-\frac{ \ln M}{A}+1<0 \) and for \( {\gamma}_i=\frac{ \ln {10}^4 M}{A} \), we have: \( g\left(\frac{ \ln 10000 M}{A}\right)=-\frac{ \ln 10000 M}{A}-\frac{ \ln 10000 M}{A}+1>0 \), ∀M ∈ (1, 1000). Hence, there exists a \( {\gamma}_{RT}\in \left(\frac{ \ln M}{A},\frac{ \ln M}{A}\right) \) such that g(γ i ) = 0. Moreover, since g(γ i )is continuous, we conclude that

$$ g\left({\gamma}_i\right)<0,\forall {\gamma}_{\iota}\in \left(\frac{ \ln M}{A},{\gamma}_{RT}\right) $$
(7)

For the second term of (6), we have:

$$ h\left({\gamma}_i\right)<0\iff {\gamma}_i>\frac{ \ln M}{A} $$
(8)

The third term of (6) is always negative. Combining (7) and (8) we define the modified strategy space, where\( \frac{\partial^2{U}_i^{NET}}{\partial {p_i}^2}<0 \), for the real time users:

$$ {\gamma}_{\iota}\in \left(\frac{ \ln M}{A},{\gamma}_{RT}\right) $$
(9)

Considering the non-real time users, we have:

$$ \frac{\partial^2{U}_i^{NET}}{\partial {p_i}^2}=\frac{AMR_i}{{p_i}^3 \ln 10}\tau \left({\gamma}_{\iota}\right)-{ce}^{p_i} $$
(10)

where

$$ \begin{array}{l}\tau \left({\gamma}_i\right)=\frac{{\left(1-{e}^{- A{\gamma}_i}\right)}^{M-2}{e}^{- A{\gamma}_i}{\gamma}_i}{1+{\left(1-{e}^{- A{\gamma}_i}\right)}^M}\left\{\begin{array}{l}-2+2{e}^{- A{\gamma}_i}-\\ {} A{\gamma}_i\left(1-{ M e}^{- A{\gamma}_i}\right)\end{array}\right\}\\ {}- A M{\left(\frac{{\left(1-{e}^{- A{\gamma}_i}\right)}^{M-1}{e}^{- A{\gamma}_i}{\gamma}_i}{1+{\left(1-{e}^{- A{\gamma}_i}\right)}^M}\right)}^2+\frac{2 \ln \left(1+{\left(1-{e}^{- A{\gamma}_i}\right)}^M\right)}{AM}\end{array} $$
(11)

We apply again the Bolzano theorem for the function τ(γ i ). For \( {\gamma}_i=\frac{ \ln M}{A} \), we have:

$$ \begin{array}{l}\tau \left(\frac{ \ln M}{A}\right)=\frac{{\left(\frac{M-1}{M}\right)}^{M-2}\frac{1}{M}\frac{ \ln M}{A}}{1+{\left(\frac{M-1}{M}\right)}^M}\left(-2+\frac{2}{M}\right)\\ {}- AM{\left(\frac{{\left(\frac{M-1}{M}\right)}^{M-1}\frac{1}{M}\frac{ \ln M}{A}}{1+{\left(\frac{M-1}{M}\right)}^M}\right)}^2+\frac{2 \ln \left(1+{\left(\frac{M-1}{M}\right)}^M\right)}{A M}<0\end{array} $$
(12)

and for \( {\gamma}_i=\frac{ \ln {10}^4 M}{A} \), we have:

$$ \begin{array}{l}\tau \left(\frac{ \ln 10000 M}{A}\right)=-\frac{1}{10000 M}\frac{ \ln 10000 M}{2}\left(2+ \ln 10000 M\right)\\ {}-\frac{1}{A M}\frac{1}{10000^2}{\left(\frac{ \ln 10000 M}{2}\right)}^2+\frac{2 \ln 2}{A M}>0\end{array} $$
(13)

∀M ∈ (1, 1000) and ∀A ∈ (0.1, 100). Hence, there exists a \( {\gamma}_{\mathrm{N} RT}\in \left(\frac{ \ln M}{A},\frac{ \ln M}{A}\right) \) such that τ(γ i ) = 0. Moreover, since τ(γ i )is continuous, we conclude thatτ(γ i ) < 0 and \( \frac{\partial^2{U}_i^{NET}}{\partial {p_i}^2}<0 \), for non-real time users:

$$ \forall {\gamma}_{\iota}\in \left(\frac{ \ln M}{A},{\gamma}_{\mathrm{N} RT}\right) $$
(14)

Hence, combining eqs. (9) and (14) we conclude that all utility functions are simultaneously concave (hence quasi concave) in the altered strategy space:

$$ {\gamma}_{\iota}\in \left(\frac{ \ln M}{A},{\gamma}_{final}\right) $$
(15)

where γ final  = min {γ RT , γ NRT }. ■.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vamvakas, P., Tsiropoulou, E.E. & Papavassiliou, S. Dynamic Provider Selection & Power Resource Management in Competitive Wireless Communication Markets. Mobile Netw Appl 23, 86–99 (2018). https://doi.org/10.1007/s11036-017-0885-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11036-017-0885-y

Keywords

Navigation