Skip to main content
Log in

Fractal Research on the Edge Blur Threshold Recognition in Big Data Classification

  • Published:
Mobile Networks and Applications Aims and scope Submit manuscript

Abstract

Research of the edge blur threshold recognition technology in big multimedia data classification has a great significance, which improves the data storage and safety performance. The traditional suspected boundary problem processing method mainly classified data through their features which were large amount, various types, less density of value and high speed of demand processing. That led to the problems such as inaccuracies and great errors. However, the edge blur threshold recognition technology summarized the methods of classifying data and put forward the principle of data classification. It classified the big multimedia data based on the reduction of feature dimensions and on the differences between the selected data. To determine the edge blur threshold, it used the least squares method. Combined with the decision tree method, it finally realized the classification of big multimedia data. The experimental results showed that the improved method has high precision and low recall rate with less time. This means the presented method has a certain advantage when compares with the classical method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bolón-Canedo V, Sánchez-Maroño N, Alonso-Betanzos A (2014) Data classification using an ensemble of filters[J]. Neurocomputing 135(135):13–20

    Article  Google Scholar 

  2. Volpi M, Matasci G, Kanevski M et al (2014) Semi-supervised multiview embedding for hyperspectral data classification[J]. Neurocomputing 145(145):427–437

    Article  Google Scholar 

  3. Nguyen TT, Huang JZ, Wu Q et al (2015) Genome-wide association data classification and SNPs selection using two-stage quality-based random forests[J]. BMC Genomics 16(S2):1–11

    Google Scholar 

  4. Shaikh R, Sasikumar M (2015) Data classification for achieving security in cloud computing [J]. Procedia Comput Sci 45:493–498

    Article  Google Scholar 

  5. Almuhaideb S, Menai MEB (2014) HColonies: a new hybrid metaheuristic for medical data classification[J]. Appl Intell 41(1):282–298

    Article  Google Scholar 

  6. Vahdat A, Morgan J, Mcintyre AR et al (2015) Tapped delay lines for gp streaming data classification with label budgets[C]. In: European conference on genetic programming. Springer International Publishing, Cham, pp 126–138

  7. Carneiro MG, Rosa JL, Lopes AA et al (2014) Network-based data classification: combining K -associated optimal graphs and high-level prediction[J]. J Braz Comput Soc 20(14(1)):1–14

    MathSciNet  Google Scholar 

  8. Xu J, Hang R (2014) A new committee-based active learning (CBAL) approach to hyperspectral remote sensing data classification[J]. Remote Sens Lett 5(6):511–520

    Article  Google Scholar 

  9. Armanfard N, Reilly JP, Komeili M (2015) Local feature selection for data classification[J]. IEEE Trans Pattern Anal Mach Intell 23(4):1–1

    Google Scholar 

  10. Pitarch Y, Ienco D, Vintrou E et al (2015) Spatio-temporal data classification through multidimensional sequential patterns: application to crop mapping in complex landscape[J]. Eng Appl Artif Intell 37(37):91–102

    Article  Google Scholar 

  11. Zhang X, Song Q, Wang G et al (2015) A dissimilarity-based imbalance data classification algorithm[J]. Appl Intell 42(3):544–565

    Article  Google Scholar 

  12. Paiva JG, Schwartz W, Pedrini H et al (2015) An approach to supporting incremental visual data classification[J]. IEEE Trans Vis Comput Graph 21(1):4–17

    Article  Google Scholar 

  13. D’Addabbo A, Maglietta R (2015) Parallel selective sampling method for imbalanced and large data classification[J]. Pattern Recogn Lett 97(C):61–67

    Article  Google Scholar 

  14. Naik B, Nayak J, Behera HS et al (2015) A self adaptive harmony search based functional link higher order ANN for non-linear data classification[J]. Neurocomputing 179(C):69–87

    Google Scholar 

  15. Hiew BY, Tan SC, Lim WS (2016) Intra-specific competitive co-evolutionary artificial neural network for data classification[J]. Neurocomputing 185:220–230

    Article  Google Scholar 

  16. Zhou J, Zhu Z, Zhen JI (2014) A memetic algorithm based feature weighting for metabolomics data classification[J]. Chin J Electron 23(4):706–711

    Google Scholar 

  17. Sharma R, Biswas KK (2013) Resolving inconsistency and incompleteness issues in software requirements[M]. Managing requirements knowledge. Springer, Berlin, pp 245–263

    Google Scholar 

  18. Guo S, Guo D, Chen L et al (2016) A centroid-based gene selection method for microarray data classification[J]. J Theor Biol 400:32–41

    Article  MathSciNet  MATH  Google Scholar 

  19. Shaikh RA, Adi K, Logrippo L (2016) A data classification method for inconsistency and incompleteness detection in access control policy sets[J]. Int J Inf Secur 93(10):1–23

    Google Scholar 

  20. Ulutagay G (2015) Suzan Kantarci †. An extension of fuzzy L-R data classification with fuzzy OWA distance[J]. Int J Intell Syst 30(9):1006–1020

    Article  Google Scholar 

  21. Xu H, Fan L, Gao X (2015) Projection twin SMMs for 2d image data classification[J]. Neural Comput & Applic 26(1):91–100

    Article  Google Scholar 

  22. Duan K, Zhang H, Wang JY (2015) Joint learning of cross-modal classifier and factor analysis for multimedia data classification[J]. Neural Comput & Applic 27(2):1–10

    Google Scholar 

  23. Taheri S, Mammadov M (2015) Structure learning of Bayesian networks using global optimization with applications in data classification[J]. Optim Lett 9(5):931–948

    Article  MathSciNet  MATH  Google Scholar 

  24. Kim T, Chung BD, Lee JS (2016) Incorporating receiver operating characteristics into naive Bayes for unbalanced data classification[J]. Computing:1–16

  25. Yang R, Wang Z (2015) Cross-oriented choquet integrals and their applications on data classification[J]. J Intell Fuzzy Syst 28(1):205–216

    MathSciNet  MATH  Google Scholar 

  26. Cordero R, Suemitsu WI, Pinto JOP (2015) Analysis and convergence theorem of complex quadratic form as decision boundary for data classification[J]. Electron Lett 51(7):561–562

    Article  Google Scholar 

  27. Morales Morales C, Flores U, Adam Medina M et al (2015) Digital artificial neural network implementation on a FPGA for data classification[J]. IEEE Lat Am Trans 13(10):3216–3220

    Article  Google Scholar 

  28. Pham VN, Long TN, Pedrycz W (2016) Interval-valued fuzzy set approach to fuzzy co-clustering for data classification[J]. Knowl-Based Syst 107:1–13

    Article  Google Scholar 

  29. Gerla V, Murgas M, Radisavljevic VD et al (2014) 25. Incremental learning in the task of eeg data classification[J]. Clin Neurophysiol 125(5):e32–e33

    Article  Google Scholar 

  30. Talat E (2014) Advances of swarm intelligent Systems in Gene Expression Data Classification[J]. J Mult Valued Logic Soft Comput 22(3):307–315

    Google Scholar 

  31. Zhang Y, Chen M, Huang D et al (2017) iDoctor: personalized and professionalized medical recommendations based on hybrid matrix factorization[J]. Futur Gener Comput Syst 66:30–35

    Article  Google Scholar 

  32. Zhang Y (2016) Grorec: a group-centric intelligent recommender system integrating social, mobile and big data technologie [J]. IEEE Trans Serv Comput 9(5):786–795

    Article  Google Scholar 

  33. Zhang Y, Qiu M, Tsai CW et al (2017) Health-CPS: healthcare cyber-physical system assisted by cloud and big data[J]. IEEE Syst J 11(1):88–95

    Article  Google Scholar 

  34. Zhang Y, Chen M, Mao S et al (2014) CAP: crowd activity prediction based on big data analysis[J]. IEEE Netw 28(4):52–57

    Article  Google Scholar 

  35. Liu Q, Ma Y, Alhussein M et al (2016) Green data center with IoT sensing and cloud-assisted smart temperature controlling system. Comput Netw 101:104–112

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the anonymous editors and reviewers for their helpful comments. This work is supported by Grants National Natural Science Foundation of China [No. 61502254].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuai Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Liu, S. & Song, H. Fractal Research on the Edge Blur Threshold Recognition in Big Data Classification. Mobile Netw Appl 23, 251–260 (2018). https://doi.org/10.1007/s11036-017-0926-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11036-017-0926-6

Keywords

Navigation