Skip to main content
Log in

Large Scale Measurement and Analytics on Social Groups of Device-to-Device Sharing in Mobile Social Networks

  • Published:
Mobile Networks and Applications Aims and scope Submit manuscript

Abstract

Recently many studies demonstrate that exploiting the Device-to-Device (D2D) content sharing in offline Mobile Social Networks (MSNs) is a promising solution to offload cellular data to local connectivities in proximity to reduce the duplicated cellular transmissions via the backbone network demanded by nearby users and hence to improve users’ quality of service (QoS). However, related D2D-based social sharing and offloading proposals are based on either assumptions and theoretical models, or limited data-driven analysis caused by small scale of data sets (e.g. hundreds of MSN users) or single-dimensional feature (e.g. human mobility only), which severely restricts applications in practice. In this paper, we perform the large-scale measurement and analytics on D2D-based content sharing groups from the perspective of social networks via the platform of Xender, one of leading global D2D sharing platforms in Asia. This D2D sharing data is a precious offline social relationship that reflects the characteristics of large-scale offline users. We analyze the behaviors of about 40 million users with 443 million D2D transmissions of 17 million files in 865 thousand social groups, and unveil the details of social structure properties, network motifs, cascade trees of friendship and propagation which are helpful for improving social D2D sharing services.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. http://www.xender.com

References

  1. Cisco Visual Networking Index: Global mobile data traffic forecast update. White Paper 2016–2021

  2. Cha M, Kwak H, Rodriguez P, Ahn YY, Moon S (2007) I tube, you tube, everybody tubes: Analyzing the world’s largest user generated content video system. In: ACM WWW

  3. Device-to-Device Communications in 3GPP LTE standard, release 12, http://www.3gpp.org/specifications/releases/68-release-12

  4. Balasubramanian A, Mahajan R, Venkataramani A (2010) Augmenting mobile 3G using WiFi. In: Proc ACM MobiSys, pp 209–222

  5. Ioannidis S, Chaintreau A, Massoulie L (2009) Optimal and scalable distribution of content updates over a mobile social network. In: IEEE INFOCOM, pp 1422–1430

  6. Wang X, Sheng Z, Yang S, Leung VCM (2016) Tag-assisted social-aware opportunistic d2d sharing for traffic offloading in mobile social networks. IEEE Wirel Commun Mag 23:60– 67

    Article  Google Scholar 

  7. Chen X, Proulx B, Gong X, Zhang J (2015) Exploiting social ties for cooperative d2d communications: a mobile social networking case. IEEE/ACM Trans Netw 23(5):1471–1484

    Article  Google Scholar 

  8. Andreev S, Pyattaev A, Johnsson K, Galinina O, Koucheryavy Y (2014) Cellular traffic offloading onto network-assisted device-to-device connections. IEEE Commun Mag 52(4):20–31

    Article  Google Scholar 

  9. Wang X, Chen M, Han Z, Wu D, Kwon T (2014) TOSS: traffic offloading by social network service-based opportunistic sharing in mobile social networks. In: IEEE Infocom, pp 2346– 2354

  10. Han B, Hui P, Kumar VSA, Marathe MV, Shao J, Srinivasan A (2011) Mobile data offloading through opportunistic communications and social participation. IEEE Trans Mobi Comput 11:821–834

  11. Hristova D, Williams MJ, Musolesi M, Panzarasa P, Mascolo C (2016) Measuring Uban social diversity using interconnected geo-social networks. In: ACM WWW, pp 21–30

  12. Zhang D, Huang J, Li Y, Zhang F, Xu C, He T (2014) Exploring human mobility with multi-source data at extremely large metropolitan scales. In: ACM Mobicom, pp 201–212

  13. Steeg G, Galstyan A (2012) Information transfer in social media. In: ACM WWW, pp 509–518

  14. Xiang R, Neville J, Rogati M (2010) Modeling relationship strengthin online social networks. In: ACM WWW, pp 981–990

  15. Rodrigues T, Benvenuto F, Cha M, Gummadi K, Almeida V (2011) On word-of-mouth based discovery of the web. In: ACM IMC

  16. Zhang X, Neglia G, Kurose J, Towsley D (2007) Performance modeling of epidemic routing. Comput Netw 51:2867–2891

    Article  MATH  Google Scholar 

  17. Li Y, Jiang Y, Jin D, Su L, Zeng L, Wu D (2010) Energy-efficient optimal opportunistic forwarding for delay-tolerant networks. IEEE Trans Veh Technol 59(9):4500–4512

    Article  Google Scholar 

  18. Chen M, Ma Y, Li Y, Wu D, Zhang Y, Youn C (2017) Wearable 2.0: enable human-cloud integration in next generation healthcare system. IEEE Communications 55(1):54–61

    Article  Google Scholar 

  19. McPhersonM, Smith-Lovin L, Cook JM (2001) Birds of a feather: homophily in social networks. Annu Rev Sociol 27(1):415–444

  20. Zhang K, Pelechrinis K (2014) Understanding spatial homophily: the case of peer influence and social selection. In: ACM WWW

  21. Wittie M, Pejovic V, Deek L, Almeroth K, Zhao B (2010) Exploiting locality of interest in online SNS. In: ACM CoNEXT

  22. Brown C, Nicosia V, Noulas A, Mascolo C (2013) Social & place-focused communities in location-based online social networks. Eur Phys J B 86(6):1–10

    Article  MathSciNet  Google Scholar 

  23. Kwak H, Lee C, Park H, Moon S (2010) What is Twitter, a social network or a news media?. In: ACM WWW, pp 591–600

  24. Cho E, Myers S, Leskovec J (2011) Friendship and mobility: user movement in location-based social networks. In: ACM KDD’11

  25. Backstrom L, Sun E, Marlow C (2010) Find me if you can: improving geographical prediction with social and spatial proximity. In: ACM WWW, pp 61–70

  26. Steeg G, Galstyan A (2012) Information transfer in social media. In: ACM WWW, pp 509–518

  27. Chen M, Ma Y, Song J, Lai C, Hu B (2016) Smart clothing: connecting human with clouds and big data for sustainable health monitoring. ACM/Springer Mob Netw Appl 21(5):825–845

    Article  Google Scholar 

  28. Wang H, Wang X, Li K, Ren J, Zhang X, Jiang T (2017) A measurement study of device-to-device sharing in mobile social networks based on spark. In: Concurrency and Computation: Practice and Experience

  29. Graph-tool, version 2.18, https://graph-tool.skewed.de/

  30. Yu C, Doppler K, Ribeiro C, Tirkkonen O (2011) Resource sharing optimization for device-to-device communication underlaying cellular networks. IEEE Trans Mobi Comput 10:2752–2763

    Google Scholar 

  31. Yang L, Yuan M, Wang W, Zhang Q, Zeng J (2016) Apps on the move: a fine-grained analysis of usage behavior of mobile apps. In: IEEE INFOCOM, pp 1–9

  32. Petsas T, Papadogiannakis A, Polychronakis M, Markatos EP, Karagiannis T (2017) Measurement, modeling, and analysis of the mobile app ecosystem. In: ACM Transactions on Modeling & Performance Evaluation of Computing Systems, vol 2, p 7

  33. Qiu J, Li Y, Tang J, Chen B, Yang Q (2016) The lifecycle and cascade of wechat social messaging groups. In: ACM WWW, pp 311–320

  34. Toole JL, Herrera-Yaqüe C, Schneider CM et al (2015) Coupling human mobility and social ties[J]. J R Soc Interface 12(105):20141128

  35. Newman M (2003) The structure and function of complex networks. SIAM Rev 45(2):167–256

  36. Chaoji V, Ranu S, Rastogi R, Bhatt R (2012) Recommendations to boost content spread in social networks. In: ACM WWW

  37. Harary F (1969) Graph theory. Addison-Wesley pp 199

  38. Watts DJ, Strogatz S (1998) Collective dynamics of small-world networks. Nature 393(6684):440442

    Article  MATH  Google Scholar 

  39. Chor B, Sudan M. (1998) A geometric approach to betweenness. SIAM J Discret Math 11(4):511523. (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  40. Han J, Choi D, Chun B, Kwon T, Kim H, Choi Y (2014) Collecting, organizing, and sharing pins in pinterest: interest-driven or social-driven? In: ACM SIGMETRICS, vol 42, pp 15–27

  41. Kreyszig E (1979) Advanced engineering mathematics, 4th edn. Wiley. p. 880, eq. 5. ISBN 0-471-02140-7

  42. Edmonds J (1967) Optimum branchings. J Res Nat Bur Standards 71B:233–240

    Article  MathSciNet  MATH  Google Scholar 

  43. Chu YJ, Liu TH (1965) On the shortest arborescence of a directed graph. Sci Sin 14:1396–1400

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofei Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Zhang, Y., Wang, H. et al. Large Scale Measurement and Analytics on Social Groups of Device-to-Device Sharing in Mobile Social Networks. Mobile Netw Appl 23, 203–215 (2018). https://doi.org/10.1007/s11036-017-0927-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11036-017-0927-5

Keywords

Navigation