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We offer a simple route to perfect omnidirectional invisibility in a spectral band of desired width. Our
approach is based on the observation that in two dimensions a complex potential v(x, y) is invisible for
incident plane waves with a wavenumber not exceeding a preassigned value α provided that its Fourier
transform with respect to y, which we denote by ṽ(x,Ky), vanishes for Ky ≤ 2α. We can fulfil this condition
for potentials modelling the permittivity profile of an optical slab. Such a slab is perfectly invisible for
any transverse electric wave whose wavenumber is in the range [0, α]. Our results also apply to transverse
magnetic waves propagating in a medium with a relative permittivity ε̂(x, y) that is a smooth bounded
function with a positive real part. © 2018 Optical Society of America
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The search for scattering potentials that are invisible in a
spectral band of arbitrarily large width is of great theoretical
and practical importance. The use of conformal mappings
[1], metamaterials [2, 3], and anisotropic material [4] has led
to some remarkable progress in this subject. But achieving
perfect (non-approximate) broad-band invisibility for ordinary
nonmagnetic isotropic material has remained out of reach. This
letter proposes a simple method for accomplishing this goal.

In one dimension, if a real or complex potential v(x) decays
exponentially (or more rapidly) as x → ±∞, the reflection am-
plitudes are complex-analytic functions of the wavenumber k,
[5]. Because a nonzero complex-analytic function can vanish
only at a set of isolated points in the complex plane, v(x) can be
reflectionless either in the entire frequency spectrum (full-band)
or at a discrete set of isolated values of the frequency. This
means that reflectionlessness and invisibility in a spectral band
of finite width (finite-band) are forbidden for such short-range
potentials.

The problem of finding full-band reflectionless real poten-
tials in one dimension has been addressed in the 1950’s [6]. The
outcome is a class of potentials with an asymptotic exponential
decay, which have recently found applications in designing an-
tireflection coatings [7, 8].

For a complex scattering potential, the reflection coefficients
for the left and right incident waves need not be equal. In par-
ticular a complex potential can be invisible from one direction
and visible from the other [9]. This observation has recently
attracted a lot of attention and led to a detailed study of the
phenomenon of unidirectional invisibility [10–21].

Consider the Schrödinger equation −ψ′′ + v(x)ψ = k2ψ for
a complex potential of the form:

v(x) = χa(x + a
2 ) f (x), χa(x) :=







1 for x ∈ [0, a],

0 otherwise,
(1)

where f (x) is a periodic potential with period K := 2π/a.
We can express f (x) in terms of its Fourier series, f (x) =
∑

∞
n=−∞ cneinKx. It turns out that if v(x) is sufficiently weak, so

that the first Born approximation is reliable, and c0 = c−m =
0 6= cm for some integer m > 0, then v(x) is unidirectionally
invisible from the left for the wavenumber k = πm/a, [14]. The
simplest example is f (x) = c1eiKx whose investigation led to
the discovery of unidirectional invisibility [9, 22–24].

As noted in Ref. [14], if cn = 0 for all n ≤ 0, then v(x) is invis-
ible from the left for all wavenumbers that are integer multiples
of π/a. The a → ∞ limit of this result suggests the full-band
left-invisibility of any potential whose Fourier transform ṽ(K)
vanishes for K ≤ 0. Surprisingly this result holds true even
for the potentials that are not weak [17], i.e., they enjoy perfect
left-invisibility.

The vanishing of ṽ(K) for K ≤ 0 is equivalent to requir-
ing the real and imaginary parts of v(x) to be related by the
Kramers-Kronig relations [17]. The potentials of this type are
generally long-range and their Schrödinger equation might not
admit asymptotically plane-wave (Jost) solutions. This makes
their physical realization more difficult and leads to problems
with the application of the standard scattering theory [18].
These difficulties do not however overshadow the significance
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of their discovery. For example, this discovery has paved the
way for the construction of finite-band unidirectionally [19] and
bidirectionally invisible potentials [20] in one dimension, and
led to the design and experimental realization of ceratin broad-
band metamaterial absorbers [25].

The condition, cn = 0 for n ≤ 0, for the unidirectional invisi-
bility of weak locally periodic potentials of the form (1) follows
as a simple byproduct of a dynamical formulation of scattering
theory where the transfer matrix of the potential is given by
the solution of a dynamical equation [26]. We have recently de-
veloped a multi-dimensional extension of this formulation [27]
and employed it in the study of unidirectional invisibility in
two and three dimensions [28]. Here we use it as a basic frame-
work for exploring finite-band invisibility in two dimensions.

Let v(x, y) be a scattering potential in two dimensions, and
suppose that the solutions of the Schrödinger equation

−∇2ψ(x, y) + v(x, y)ψ(x, y) = k2ψ(x, y), (2)

have the asymptotic form:

1
2π

∫ k

−k
dp eipy

[

A±(p)ei̟(p)x + B±(p)e−i̟(p)x
]

, (3)

for x → ±∞, where A±(p) and B±(p) are functions vanishing
for |p| > k, ̟(p) :=

√

k2 − p2, and the x-axis is the scattering
axis. We can write the wavevector for a left-incident wave that
makes an angle θ0 with the x-axis in the form~k0 = ̟(p0)êx +
p0 êy, where êx and êy are respectively the unit vectors pointing
along the x- and y-axes, and p0 := k sin θ0 (See Fig. 1.) For such
an incident wave, A−(p) = 2πδ(p − p0), B+(p) = 0, and the
scattering solution of (2) satisfies:

ψ(~r) → ei~k0·~r +
√

i/kr eikr f (θ) as r → ∞,

where~r := xêx + yêx, (r, θ) are the polar coordinates of~r, and
f (θ) is the scattering amplitude.

The transfer matrix of the potential v(x, y) is the 2× 2 matrix
(operator) M(p) fulfilling

M(p)





A−(p)

B−(p)



 =





A+(p)

B+(p)



 .

Its entries Mij(p) are linear operators acting on the functions
A−(p) and B−(p). In Ref. [27] we show that M(p) stores all the
information about the scattering features of v(x, y). In particu-
lar, if we set T−(p) := B−(p) and T+(p) := A+(p) − A−(p),
we can show that

T−(p) = −2πM22(p)−1M21(p)δ(p − p0), (4)

T+(p) = M12(p)T−(p) + 2π[M11(p)− 1]δ(p − p0), (5)

f (θ) = − ik| cos θ|√
2π

×







T−(k sin θ) for cos θ < 0

T+(k sin θ) for cos θ ≥ 0
. (6)

A practically important property of the transfer matrix
M(p) is that it has the same composition property as its one-
dimensional analog [27]. This follows from the remarkable fact
that

M(p) = U(∞, p), (7)

where U(x, p) is the evolution operator for an effective non-
Hermitian Hamiltonian operator H(x, p) with x playing the

role of an evolution parameter. To make this statement more
precise, we first introduce v(x, i∂p) as the operator defined by

v(x, i∂p)φ(p) :=
1

2π

∫ k

−k
dq ṽ(x, p − q)φ(q), (8)

where φ(p) is a test function vanishing for |p| > k, and ṽ(x,Ky)
is the Fourier transform of v(x, y) with respect to y, i.e.,

ṽ(x,Ky) :=
∫ ∞

−∞
dy e−iKyyv(x, y). (9)

Equation (7) holds provided that we identify U(x, p) with the
solution of

i∂xU(x, p) = H(x, p)U(x, p), U(−∞, p) = I, (10)

where

H(x, p) :=
1

2̟(p)
e−i̟(p)xσ3 v(x, i∂p)K ei̟(p)xσ3 , (11)

I is the 2× 2 identity matrix, σ i are the Pauli matrices, and K :=
σ3 + iσ2, [27].

It is important to realize that all the quantities we have
introduced, in particular M(p) and H(x, p), depend on the
wavenumber k. If H(x, p) equals the zero operator 0 for a value
of k, then (7) and (10) imply M(p) = I for this value of k. In light
of (4), (5), and (6), this gives f (θ) = 0 for all θ0, i.e., the potential
is invisible for any incident plane wave with this wavenumber.
Because this argument does not rely on any approximation, this
invisibility is perfect. Furthermore if this property holds for a
range of values of k, then the potential will be perfectly invisi-
ble for any wave packet that is constructed by superposing the
plane waves with wavenumber belonging to this range.

Now, suppose that there is some α > 0 such that ṽ(x,Ky) = 0
for all Ky ≤ 2α. Then in view of (8) and (11), H(x, p) = 0 for all
k ≤ α, and the argument of the preceding paragraph proves the
following result.

Theorem 1: Let α > 0 and v(x, y) be a scattering potential such
that

ṽ(x,Ky) = 0 for all Ky ≤ 2α. (12)

Then v(x, y) is perfectly invisible for any incident plane wave
with wavenumber k ≤ α.

According to this theorem, we can achieve perfect invisibility in
the spectral band [0, α], if we can construct a potential satisfying
(12). This is actually quite easy. With the help of (9), we can
express every such potential in the form

v(x, y) = ei2αyu(x, y), (13)

where u(x, y) satisfies ũ(x,Ky) = 0 for all Ky ≤ 0, i.e., for each
fixed value of x, ux(y) := u(x, y) is one of the potentials consid-
ered in [17–20]. Clearly,

u(x, y) =
1

2π

∫ ∞

0
dqeiqyũ(x, q), (14)

where for x → ±∞, |ũ(x, q)| → 0 sufficiently fast so that the so-
lutions of (2) have the asymptotic expression (3). This condition
is clearly satisfied for

ũ(x, q) = χa(x) f̃ (x, q), q ≥ 0, (15)

where χa is the function defined in (1) and f̃ is an arbitrary
function fulfilling

∫ ∞

0 dq| f̃ (x, q)| < ∞. As an example, let
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f̃ (x, q) = z̃ e−Lqqn, where z̃ and L are real parameters, L > 0,
and n is a nonnegative integer. Then (14) and (15) give

u(x, y) = z χa(x)
( y

L
+ i

)−n−1
, (16)

where z := n! z̃/2π(−iL)n+1. Note that for |y| → ∞, |v(x, y)| ∝

|L/y|n+1.
Next, we explore optical realizations of the perfect invisi-

bility discussed in Theorem 1. Consider a nonmagnetic opti-
cal medium with translational symmetry along the z-axis, so
that its properties are described by a relative permittivity ε̂
that depends only on x and y. A z-polarized transverse elec-
tric (TE) wave propagating in this medium has an electric field
of the form ~E(x, y, z) = E0 e−ikctψ(x, y)êz, where E0 is a con-
stant, c is the speed of light in vacuum, êz is the unit vector
pointing along the z-axis, and ψ solves the Helmholtz equation
[∇2 + k2 ε̂(x, y)]ψ = 0. The equivalence of this equation and the
Schrödinger equation (2) for the optical potential:

v(x, y) = k2[1 − ε̂(x, y)], (17)

together with Theorem 1 prove the following result.

Theorem 2: Let u(x, y) be a function such that ũ(x,Ky) = 0 for
Ky ≤ 0. Then a nonmagnetic optical medium described by the
permittivity profile

ε̂(x, y) = 1 + e2iαyu(x, y), (18)

is perfectly invisible for any incident TE wave with wavenum-
ber k ≤ α, [29].

In particular, if (14) and (15) hold, (18) describes an optical slab
of thickness a that is invisible for these waves.

Next, consider choosing f̃ in (15) in such a way that u(x, y)
decays rapidly for y → ±∞. Then (18) describes a slab of finite
extension along both x- and y-axes. For example, the permittiv-
ity profile (18) with u(x, y) given by (16) models a slab with a
rectangular cross section,

D = {(x, y)|x ∈ [0, a], y ∈ [−b, b]}, (19)

provided that (L/b)n+1 ≪ 1. Figure 1 shows the plot of the
real and imaginary parts of ε̂(x, y) for u(x, y) given by (16), α =
2π/500 nm, z = 10−3, L = 1 µm, and n = 4. These values yield
|ε̂(x, y)− 1| < 7 × 10−6 for |y| > 2.5 µm. Therefore, we can use
ε̂(x, y) to model a slab of cross section D with b ≥ 2.5 µm, which
is invisible for TE waves of wavelength λ := 2π/k ≥ 500 nm.

In order to provide a graphical demonstration of the in-
visibility of the above system for TE waves with wavelength
λ ≥ 500 nm, we compute its scattering amplitude using the
first Born approximation. This is a reliable approximation
scheme, because the corresponding optical potential is suffi-
ciently weak.

Performing the first Born approximation corresponds to
solving the dynamical equation (10) for the transfer matrix
using the first-order perturbation theory, i.e., M(p) ≈ I −
i
∫ ∞

−∞
dxH(x, p), [14, 28]. Substituting (11) in this equation, we

obtain explicit formulas for the action of Mij(p) on test func-
tions φ(p). These together with (4) – (6) imply

f (θ) ≈ −1

2
√

2π
˜̃v
(

k(cos θ − cos θ0), k(sin θ − sin θ0)
)

, (20)

where ˜̃v(Kx,Ky) :=
∫ ∞

−∞
dx

∫ ∞

−∞
dy e−i(Kxx+Kyy)v(x, y) is the two-

dimensional Fourier transform of v(x, y).

For a scattering potential v(x, y) satisfying ṽ(x,Ky) = 0 for
Ky ≤ 2α, we have ˜̃v(Kx,Ky) = 0 for Ky ≤ 2α. In view of this
observation and the fact that | sin θ − sin θ0| ≤ 2, the right-hand
side of (20) vanishes. This provides a first-order perturbative
verification of Theorem 1 which holds to all orders of perturba-
tion theory.

We can use (20) to determine the wavelengths λ at which a
weak optical potential is invisible for TE waves. Figure 2 shows
regions in the θ-λ plane where f (θ) 6= 0 for some TE waves
that propagate in a medium with permittivity profile given by
(16), (18), z = 10−3, a = 100 µm, L = 1 µm, α = 2π/500 nm,
and n = 4. This profile, which can be realized using a slab of
thickness a = 100 µm and width 2b ≥ 5 µm placed in vacuum,
is invisible for the TE waves with an arbitrary incidence angle
θ0 and wavelength λ ≥ 500 nm.

Next, we study the propagation of a transverse magnetic
(TM) wave in a nonmagnetic isotropic medium described by
a relative permittivity profile ε̂(x, y). The magnetic field for this
wave has the form ~H(x, y, z) = H0 e−ikctφ(x, y)êz, where H0 is
a constant and φ is a function. Imposing Maxwell’s equations,
we find that φ satisfies

ε̂−1∇2φ + ~∇(ε̂−1) · ~∇φ + k2φ = 0. (21)

This becomes equivalent to the Schrödinger equation (2) pro-
vided that we set ψ := φ/

√
ε̂ and

v := −k2η +
3|~∇η|2

4(1 + η)2 − ∇2η

2(1 + η)
, (22)

where η := ε̂ − 1. For a permittivity profile of the form (18),
η(x, y) = e2iαyu(x, y). Therefore, η̃(x,Ky) = 0 for Ky ≤ 2α
provided that ũ(x,Ky) = 0 for Ky ≤ 0.

A careful mathematical analysis of (22) shows that if ε̂ is
bounded and its real part exceeds a positive value, i.e., there are
positive real numbers m and M such that m ≤ Re(ε̂) ≤ |ε̂| ≤ M,
then the vanishing of η̃(x,Ky) for Ky ≤ 2α implies that the same
holds for the potential (22), [30]. Therefore it satisfies the invisi-
bility condition (12), and we are led to the following result.

Theorem 3: A nonmagnetic optical medium described by a
smooth relative permittivity profile of the form (18) is perfectly
invisible for incident TM waves of wavenumber k ≤ α provided
that ũ(x,Ky) = 0 for Ky ≤ 0 and there are positive numbers m
and M such that m ≤ Re[ε̂(x, y)] ≤ |ε̂(x, y)| ≤ M, [29].

If the hypothesis of this theorem holds except that we allow u
to have discontinuities along boundaries of certain connected
regions Dα, then we need to solve (21) in Dα and patch the solu-
tions for adjacent Dα by imposing the standard electromagnetic
interface conditions along their common boundaries. Because
the interface conditions involve ε̂, the presence of the discon-
tinuities can make the system visible even for k ≤ α. This is
true unless the resulting jumps in the value of |ε̂| are negligi-
bly small. For example consider the optical slab we examined
in our discussion of the TE waves, and suppose that u(x, y) is
given by the right-hand side of (16) multiplied by e−(2x−a)2/σ2

.
Then, for σ ≪ a, we can safely ignore the contribution of the dis-
continuity of ε̂ along the boundaries of the slab and conclude
that it is practically invisible for both TE and TM waves with
k ≤ α.

In summary, we have introduced a simple criterion for
perfect finite-band invisibility in two dimensions and explored
some of its optical realizations. In contrast to the criteria for
broadband invisibility in one dimension [17–20], ours does
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Fig. 1. A schematic view of an oblique wave incident upon an inhomogeneous medium confined between the planes x = 0 and
x = a (on the left), and plots of the real and imaginary parts of its relative permittivity ε̂ that is given by (16) and (18) with α =
2π/500 nm, L = 1 µm, n = 4, and x ∈ [0, a] (on the right).

Fig. 2. Visibility domains of the permittivity profile
ε̂ = 1 + z χa(x)e2iαy (y/L + i)−5 for TE waves: The colored
regions correspond to values of λ and θ for which f (θ) 6= 0.
The top, middle, and bottom graphs correspond to TE waves
with incidence angle θ0 = −45◦, 0◦, and 45◦, respectively. Here
z = 10−3, a = 100 µm, L = 1 µm, and α = 2π/500 nm.
For all values of θ0 the system is invisible for λ ≥ 500 nm. As
one increases θ0, the system becomes invisible above a critical
wavelength that is smaller than 500 nm.

not put an upper bound on the asymptotic decay rate of the
potential along the scattering axis [31]. This is a key feature of
our route to broadband invisibility that allows for its realiza-
tion using optical slabs with a finite thickness. Our results are
not confined to optical waves and apply to any wave whose
behavior is described using a scattering potential. Furthermore,
they admit a straightforward extension to three dimensions.
This is simply because the dynamical formulation of scattering
in three dimensions [27] involves an effective Hamiltonian
operator that has the same structure as its two-dimensional
analog. We expect the resulting broadband invisibility in three
dimensions to find interesting applications in acoustics.
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