Skip to main content
Log in

Building and Climbing based Visual Navigation Framework for Self-Driving Cars

  • Published:
Mobile Networks and Applications Aims and scope Submit manuscript

Abstract

This paper proposes a visual navigation strategy for self-driving car running on a constant-width road. The task is to process road image with multiple elements information for planing path and providing the basis for acceleration and deceleration. Common road elements are straight, bend, ramp and crossroad. We propose a novel navigation framework (BCVN) that explicitly decomposes the visual navigation task into navigation line extraction, deviation calculation and curvature calculation. The core idea of navigation line extraction is Building-Climbing. Building is to build foundations with a small number of consecutive points. Climbing is to climb points on the basis of the foundations. Building and Climbing are both used in search of bilateral edges. Deviation calculation use the method of dynamic weighting for self-driving car to control steering. Curvature calculation is to obtain a suitable value for self-driving car to achieve acceleration and deceleration control. We use least squares algorithm to assist in bilateral edges search and curvature calculation. We describe our real-time implementation of the BCVN framework, the method of dynamic weight and Building-Climbing. We test the strategy on the self-driving car platform, which shows strong adaptability and high efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Krajník T, Přeučil L (2008) A simple visual navigation system with convergence property. In: European robotics symposium, pp 283–292

  2. Lv N, Niu S, Li X (2011) Research on image processing algorithm of intelligent car with visual navigation. In: International Forum on Strategic Technology, pp 1215–1220

  3. Juberts M, Barbera AJ (2004) Status report on next-generation ladar for driving unmanned ground vehicles. Proc Spie 5609:1–12

    Article  Google Scholar 

  4. Yun DS, Choi JH, Lee GY, Kim JH (2001) The concept for the integration of tele-operated unmanned vehicle and driving simulator, in. In: IEEE International Symposium on Industrial Electronics, 2001. Proceedings. ISIE, vol 3, pp 1419–1424

  5. Moon HC, Lee JC, Kim JH, Lee DM (2009) Development of unmanned ground vehicles available of urban drive. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp 786–790

  6. Larsen AKR, Olson K (1996) Intersection navigation for unmanned ground vehicles. SPIE 2738:14–25

    Google Scholar 

  7. Ren X, Cai Z (2010) Kinematics model of unmanned driving vehicle. In: Intelligent Control and Automation, pp 5910–5914

  8. Lefsky MA, Cohen WB, Parker GG, Harding DJ (2001) Bioone online journals - lidar remote sensing for ecosystem studies. Bioscience, Oxford

    Google Scholar 

  9. Klett JD (1981) Stable analytical inversion solution for processing lidar returns. Appl Opt 20(2):211

    Article  Google Scholar 

  10. Dieter DE (2002) Vision for ground vehicles: history and prospects. Int J Veh Auton Syst 1(1):1–44

    Article  Google Scholar 

  11. Armingol JM, de la Escalera A, Hilario C, Collado JM, Carrasco JP, Flores MJ, Pastor JM, Rodríguez F. J. (2007) Ivvi: Intelligent vehicle based on visual information. Robot Auton Syst 155(12):904–916

    Article  Google Scholar 

  12. Anagnostopoulos CNE, Anagnostopoulos IE, Loumos V, Kayafas E (2006) A license plate-recognition algorithm for intelligent transportation system applications. IEEE Trans Intell Transp Syst 7(3):377–392

    Article  Google Scholar 

  13. Wang FY (2010) Parallel control and management for intelligent transportation systems: concepts, architectures, and applications. IEEE Trans Intell Transp Syst 11(3):630–638

    Article  Google Scholar 

  14. Zhou Z, Yang C.-N., Chen B, Sun X, Liu Q, Wu QMJ (2016) Effective and Efficient Image Copy Detection with Resistance to Arbitrary Rotation. IEICE Trans Inf Syst E99D(6):1531–1540

    Article  Google Scholar 

  15. Xia Z, Wang X, Zhang L, Qin Z, Sun X, Ren K (2016) A Privacy-Preserving and Copy-Deterrence Content-Based Image Retrieval Scheme in Cloud Computing. IEEE Trans Inf Forensics Secur 11(11):2594–2608

    Article  Google Scholar 

  16. Li J, Li X, Yang B, Sun X (2015) Segmentation-based image copy-move forgery detection scheme. IEEE Trans Inf Forensics Secur 10(3):507–518

    Article  Google Scholar 

  17. Pan Z, Zhang Y, Kwong S (2015) Efficient motion and disparity estimation optimization for low complexity multiview video coding. IEEE Trans Broadcast 61(2):166–176

    Article  Google Scholar 

  18. Pan Z, Lei J, Zhang Y, Sun X, Kwong S (2016) Fast Motion Estimation Based on Content Property for Low-Complexity H.265/HEVC Encoder. IEEE Trans Broadcast 62(3):675–684

    Article  Google Scholar 

  19. Pan Z, Jin P, Lei J, Zhang Y, Sun X, Kwong S (2016) Fast reference frame selection based on content similarity for low complexity HEVC encoder. J Vis Commun Image Represent 40(B):516–524

    Article  Google Scholar 

  20. Commuri S, Jagannathan S, Lewis FL (2015) Cmac neural network control of robot manipulators. J Field Rob 14(14):465–482

    MATH  Google Scholar 

  21. Blank TB, Brown SD, Calhoun AW, Doren DJ (2015) Neural network models of potential energy surfaces. J Chem Theory Comput 1(103):4129–4137

    Google Scholar 

  22. Hinton G, Vinyals O, Dean J (2015) Distilling the knowledge in a neural network. Comput Sci 14(7):38–39

    Google Scholar 

  23. Wu D, Zhang P, Wang H, Wang C, Wang R (2016) Node service ability aware packet forwarding mechanism in intermittently connected wireless networks. IEEE Trans Wirel Commun PP(99):1–1

    Article  Google Scholar 

  24. Wu D, Yan J, Wang H, Wu D, Wang R (2017) Social attribute aware incentive mechanism for device-to-device video distribution. IEEE Trans Multimedia PP(99):1–1

    Google Scholar 

  25. Doudna JA, Cameron L (2013) Noland, Multiple sensors ensure guide strand selection in human rnai pathways. RNA 19(5):639–648

    Article  Google Scholar 

  26. Guzel M, Unal M (2015) A survey of insect eye inspired visual sensors. In: International Conference on Electrical and Electronics Engineering, pp 139–142

  27. Yang Q, Lim A, Li S, Fang J, Agrawal P (2010) Acar: Adaptive connectivity aware routing for vehicular ad hoc networks in city scenarios. Mobile Netw Appl 15(1):36–60

    Article  Google Scholar 

  28. Qu Z, Keeney J, Robitzsch S, Zaman F, Wang X (2016) Multilevel pattern mining architecture for automatic network monitoring in heterogeneous wireless communication networks. China Commun 13(7):108–116

    Article  Google Scholar 

  29. Fu Z, Sun X, Liu Q, Zhou L, Shu J (2015) Achieving efficient cloud search services: multi-keyword ranked search over encrypted cloud data supporting parallel computing. IEICE Trans Commun E98B(1):190–200

    Article  Google Scholar 

  30. Xia Z, Wang X, Sun X, Wang Q (2016) A secure and dynamic multi-keyword ranked search scheme over encrypted cloud data. IEEE Trans Parallel Distrib Syst 27(2):340–352

    Article  Google Scholar 

  31. Xianyi Chen SC, Wu Y (2017) Coverless information hiding method based on the chinese character encoding. J Intell Technol 18(2):91–98

    Google Scholar 

  32. Wu D, Wang Y, Wang H, Yang B, Wang C, Wang R (2016) Dynamic coding control in social intermittent connectivity wireless networks. IEEE Trans Veh Technol 65(9):7634–7646

    Article  Google Scholar 

  33. Rosenblum M, Davis LS (1996) An improved radial basis function network for visual autonomous road following. IEEE Trans Neural Netw 7(5):1111–20

    Article  Google Scholar 

  34. Chen S, Weng J (1998) State-based shoslif for indoor visual navigation. In: International Conference on Pattern Recognition, p 482

  35. Royer E, Lhuillier M, Dhome M, Lavest JM (2007) Monocular vision for mobile robot localization and autonomous navigation. Int J Comput Vis 74(3):237–260

    Article  MATH  Google Scholar 

  36. Lu Y, Song D (2017) Visual navigation using heterogeneous landmarks and unsupervised geometric constraints. IEEE Trans Robot 31(3):736–749

    Article  Google Scholar 

  37. Kalal Z, Mikolajczyk K, Matas J (2012) Tracking-learning-detection. IEEE Trans Pattern Anal Mach Intell 34(7):1409–1422

    Article  Google Scholar 

Download references

Acknowledgements

The work is supported by the National Science Foundation of China (Grant no. 51575283), PAPD fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengshan Qian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, C., Shen, X., Zhang, Y. et al. Building and Climbing based Visual Navigation Framework for Self-Driving Cars. Mobile Netw Appl 23, 624–638 (2018). https://doi.org/10.1007/s11036-017-0976-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11036-017-0976-9

Keywords

Navigation