Skip to main content

Advertisement

Log in

Big Data Aided Vehicular Network Feature Analysis and Mobility Models Design

  • Published:
Mobile Networks and Applications Aims and scope Submit manuscript

Abstract

Vehicular networks play a pivotal role in intelligent transportation system (ITS) and smart city (SC) construction, especially with the coming of 5G. Mobility models are crucial parts of vehicular network, especially for routing policy evaluation as well as traffic flow management. The big data aided vehicle mobility analysis and design attract researchers a lot with the acceleration of big data technology. Besides, complex network theory reveals the intrinsic temporal and spatial characteristics, considering the dynamic feature of vehicular network. In the following content, a big GPS dataset in Beijing, and its complex features verification are introduced. Some novel vehicle and location collaborative mobility schemes are proposed relying on the GPS dataset. We evaluate their performance in terms of complex features, such as duration distribution, interval time distribution and temporal and spatial characteristics. This paper elaborates upon mobility design and graph analysis of vehicular networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tan F, Wu J, Xia Y, Chi KT (2014) Traffic congestion in interconnected complex networks. Phys Rev E 89(6):062813

    Article  Google Scholar 

  2. Jiang X, Du DH (2015) Bus-vanet: a bus vehicular network integrated with traffic infrastructure. IEEE Intell Transp Syst Mag 7(2):47–57

    Article  MathSciNet  Google Scholar 

  3. Cheng X, Yang L, Shen X (2015) D2D for intelligent transportation systems: A feasibility study. IEEE Trans Intell Transp Syst 16(4):1784–1793

    Article  Google Scholar 

  4. Kim H, Feamster N (2013) Improving network management with software defined networking. IEEE Commun Mag 51(2):114–119

    Article  Google Scholar 

  5. Silva CM, Meira W, Sarubbi JF (2016) Non-intrusive planning the roadside infrastructure for vehicular networks. IEEE Trans Intell Transp Syst 17(4):938–947

    Article  Google Scholar 

  6. Luan TH, Lu R, Shen X, Bai F (2015) Social on the road: enabling secure and efficient social networking on highways. IEEE Wireless Commun 22:44–51

    Article  Google Scholar 

  7. Andrews JG, Buzzi S, Choi W, Hanly SV, Lozano A, Soong AC, Zhang JC (2014) What will 5g be IEEE J Sel Areas Commun 32(6):1065–1082

    Article  Google Scholar 

  8. Wang J, Jiang C, Han Z, Ren Y, Hanzo L (2016) Network association strategies for an energy harvesting aided super-WiFi network relying on measured solar activity. IEEE J Sel Areas Commun 34(12):3785–3797

    Article  Google Scholar 

  9. Uppoor S, Trullols-Cruces O, Fiore M, Barcelo-Ordinas JM (2014) Generation and analysis of a large-scale urban vehicular mobility dataset. IEEE Trans Mob Comput 13(5):1061–1075

    Article  Google Scholar 

  10. Djahel S, Doolan R, Muntean G-M, Murphy J (2015) A communications-oriented perspective on traffic management systems for smart cities: Challenges and innovative approaches. IEEE Commun Surv Tutorials 17(1):125– 151

    Article  Google Scholar 

  11. Bansal N, Liu Z (2003) Capacity, delay and mobility in wireless ad-hoc networks. In: INFOCOM

  12. Qiao Y, Cheng Y, Yang J, Liu J, Kato N (2016) A mobility analytical framework for big mobile data in densely populated area. IEEE Transactions on Vehicular Technology

  13. Zheng X, Chen W, Wang P, Shen D, Chen S, Wang X, Zhang Q, Yang L (2016) Big data for social transportation. IEEE Trans Intell Transp Syst 17(3):620–630

    Article  Google Scholar 

  14. Watts DJ, Strogatz SH (1998) Collective dynamics of ’small-world’ networks. Nature 393(6684):440–2

    Article  Google Scholar 

  15. Barabási A-L, Albert R (1999) Emergence of scaling in random networks. Science 286(5439):509–512

    Article  MathSciNet  Google Scholar 

  16. Wang J, Jiang C, Quek TQ, Wang X, Ren Y (2016) The value strength aided information diffusion in socially-aware mobile networks. IEEE Access 4:3907–3919

    Article  Google Scholar 

  17. Wang J, Jiang C, Gao L, Yu S, Han Z, Ren Y (2016) Complex network theoretical analysis on information dissemination over vehicular networks. In: 2016 IEEE International Conference on Communications (ICC), IEEE, May , pp 1–6

  18. Wang J, Jiang C, Bie Z, Quek TQ, Ren Y (2016) Mobile data transactions in device-to-device communication networks: Pricing and auction. IEEE Wireless Commun Lett 5(3):300–303

    Article  Google Scholar 

  19. Ruela AS, Cabral RS, Aquino AL, Guimaraes FG (2009) Evolutionary design of wireless sensor networks based on complex networks. In: 2009 5th International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP), IEEE, pp 237–242

  20. Tan W, Blake MB, Saleh I, Dustdar S (2013) Social-network-sourced big data analytics. IEEE Internet Comput 17:62–69

    Article  Google Scholar 

  21. Wu X, Zhu X, Wu G-Q, Ding W (2014) Data mining with big data. IEEE Trans Knowl Data Eng 26:97–107

    Article  Google Scholar 

  22. Härri J, Filali F, Bonnet C (2009) Mobility models for vehicular ad hoc networks: a survey and taxonomy. IEEE Commun Surv Tutorials 11:19–41. FOURTH QUARTER

    Article  Google Scholar 

  23. Bettstetter C, Resta G, Santi P (2003) The node distribution of the random waypoint mobility model for wireless ad hoc networks. IEEE Trans Mob Comput 2(3):257–269

    Article  Google Scholar 

  24. Hsu W-J, Merchant K, Shu H-w, Hsu C-H, Helmy A (2005) Weighted waypoint mobility model and its impact on ad hoc networks. ACM SIGMOBILE Mobile Comput Comm Rev 9(1):59–63

    Article  Google Scholar 

  25. Zheng Q, Hong X, Liu J (2006) An agenda based mobility model21. In: Proceedings of the 39th annual Symposium on Simulation, IEEE Computer Society, pp 188–195

  26. Sommer C, German R, Dressler F (2011) Bidirectionally coupled network and road traffic simulation for improved ivc analysis. IEEE Trans Mob Comput 10(1):3–15

    Article  Google Scholar 

  27. Fellendorf M, Vortisch P (2010) Microscopic traffic flow simulator vissim. In: Fundamentals of traffic simulation. Springer, pp 63– 93

  28. Zhang K, Wang J, Jiang C, Quek TQS, Ren Y (2017) Content aided clustering and cluster head selection algorithms in vehicular networks. In: 2017 IEEE Wireless Communications and Networking Conference (WCNC), pp 1–6

  29. Song C, Koren T, Wang P, Barabási A-L (2010) Modelling the scaling properties of human mobility. Nat Phys 6(10):818– 823

    Article  Google Scholar 

  30. Musolesi M, Mascolo C (2007) Designing mobility models based on social network theory. ACM SIGMOBILE Mobile Comput Commun Rev 11(3):59–70

    Article  Google Scholar 

  31. Sood V, Redner S (2005) Voter model on heterogeneous graphs. Phys Rev Lett 94(17):178701

    Article  Google Scholar 

  32. Saramäki J, Kivelä M, Onnela J-P, Kaski K, Kertesz J (2007) Generalizations of the clustering coefficient to weighted complex networks. Phys Rev E 75(2):027105

    Article  Google Scholar 

  33. Brandes U (2001) A faster algorithm for betweenness centrality. J Math Sociol 25(2):163–177

    Article  Google Scholar 

  34. Dorogovtsev SN, Mendes JFF, Samukhin AN (2001) Giant strongly connected component of directed networks. Phys Rev E 64(2):025101

    Article  Google Scholar 

  35. Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ, Wedeen VJ, Sporns O (2008) Mapping the structural core of human cerebral cortex. PLoS Biol 6(7):e159

    Article  Google Scholar 

  36. Wang J, Jiang C, Quek TQ, Ren Y (2016) The value strength aided information diffusion in online social networks. In: IEEE Global Conference on Signal and Information Processing (GlobalSIP), Washington, DC, USA, pp 1–6

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, R., Ye, J., Tang, K. et al. Big Data Aided Vehicular Network Feature Analysis and Mobility Models Design. Mobile Netw Appl 23, 1487–1495 (2018). https://doi.org/10.1007/s11036-017-0981-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11036-017-0981-z

Keywords

Navigation