Skip to main content

Advertisement

Log in

Research on the Energy Allocation Scheme Based on SWIPT Relaying System

  • Published:
Mobile Networks and Applications Aims and scope Submit manuscript

Abstract

Simultaneous wireless information and power transfer (SWIPT) is a promising communication solution for energy-constrained wireless network. While the interference affects the performance of the system, it also carries energy. In this paper, we investigate an amplify-and-forward (AF) relaying network. In the network, an energy-constrained relay harvests energy from the received RF signal. During the information transmission (IT) period, the relay uses the harvested energy to forward the signal. When the IT is interrupted for some reason, such as strong interference, the relay stores the harvested energy into the energy storage till the interference ends. Particularly, in the IT period, the relay allocates the energy of its storage to the blocks of the IT. Based on the time switching (TS) architecture, the system rates of two energy allocation cases are discussed. It is proved that the scheme based on the energy-allocated-evenly (EAE) is the optimal solution of the system rate maximization, and the mathematical expressions of the system rate based on the EAE scheme is obtained. Then, we discuss the influence of the EAE scheme on the system rate, and the numerical analysis provides practical insights into the effect of two system parameters, namely, interference power and interference factor on the performance of wireless energy harvesting (EH) and IT using AF relay. The results show that the proposed EAE scheme can effectively improve the relaying system rate under an interference channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sudevalayam S, Kulkarni P (2008) Energy harvesting sensor nodes: survey and implications. IEEE Commun Surv Tutor 13(3):443–461

    Article  Google Scholar 

  2. Visser HJ, Vullers RJ (2013) RF Transport for wireless sensor network applications: principles and requirements. Proc IEEE 101(6):1410–1423

  3. Lu X, Wang P, Niyato D et al (2017) Wireless networks with RF energy harvesting: a contemporary survey. IEEE Commun Surv Tutor 17(2):757–789

    Article  Google Scholar 

  4. Varshney LR (2008) Transporting information and energy simultaneously. IEEE Int Sym Inform Theory. IEEE:1612–1616

  5. Zhang R, Ho CK (2013) MIMO broadcasting for simultaneous wireless information and power transfer. IEEE Trans Wirel Commun 12(5):1989–2001

    Article  Google Scholar 

  6. Liu L, Zhang R, Chua KC (2013) Wireless information transfer with opportunistic energy harvesting. IEEE Trans Wirel Commun 12(1):288–300

    Article  Google Scholar 

  7. Ju H, Zhang R (2014) A novel mode switching scheme utilizing random beamforming for opportunistic energy harvesting. IEEE Trans Wirel Commun 13(4):2150–2162

    Article  Google Scholar 

  8. Ng DWK, Schober R (2013) Spectral efficient optimization in OFDM systems with wireless information and power transfer. CoRR 6(2):1–5

  9. Shi Q, Liu L, Xu W et al (2013) Joint transmit beamforming and receive power splitting for MISO SWIPT systems. IEEE Trans Wirel Commun 13(6):3269–3280

    Article  Google Scholar 

  10. Wireless relay communication system and method, http://www.freepatentsonline.com

  11. Nasir AA, Zhou X, Durrani S et al (2013) Relaying protocols for wireless energy harvesting and information processing. IEEE Trans Wirel Commun 12(7):3622–3636

    Article  Google Scholar 

  12. Chalise BK, Zhang YD, Amin MG (2012) Energy harvesting in an OSTBC based amplify-and- forward MIMO relay system. IEEE Int Conf Acoust, Speech Signal Process. IEEE:3201–3204

  13. Ding Z, Perlaza SM, Esnaola I et al (2014) Power allocation strategies in energy harvesting wireless cooperative networks. IEEE Trans Wirel Commun 13(2):846–860

    Article  Google Scholar 

  14. Nasir AA, Zhou X, Durrani S et al (2015) Wireless- powered relays in cooperative communications: time-switching relaying protocols and throughput analysis. IEEE Trans Commun 63(5):1607–1622

    Article  Google Scholar 

  15. Liu Y, Wang L, Elkashlan M et al (2014) Two-way relaying networks with wireless power transfer: policies design and throughput analysis// IEEE global communications conference. IEEE:4030–4035

  16. Diamantoulakis PD, Pappi KN, Karagiannidis GK et al (2017) Joint downlink/uplink Design for Wireless Powered Networks with Interference. IEEE Access 5(99):1534–1547

    Article  Google Scholar 

  17. Assanovich BA (2008) Two schemes for block-based transmission of variable-length codes// IEEE Region 8 International Conference on Comput- ational Technologies in Electrical and Electronics Engineering. Sibircon IEEE 2008:253–256

    Google Scholar 

  18. Chhabra C (2014) Improvements in the bisection method of finding roots of an equation. Adv Comput Conf. IEEE: 11–16

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 61372011) and Natural Science Foundation of Tianjin (Grant No. 16JCTPJC46900).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianguo Li.

Appendix

Appendix

Notation: f1(x)|x represents the derivative of f(x) with respect to x; f2(x)|x denotes the derivative of f1(x)|x with respect to x.

It is important to point out that α ∈ [0, 1), \( {\alpha}_1^{\ast}\in \left[0,1\right) \), \( {\alpha}_2^{\ast}\in \left(0,1\right) \), and \( {\alpha}_3^{\ast}\in \left[0,1\right) \) hold in the following discussion.

For (21), R can be regarded as a function of β, R(β). We can observe that R(β → 1+)= R(β → 1),i.e., the left limit of R(β) at β = 1 is equal to the right limit, namely, R(β) is continuous at β = 1. Therefore, if we can prove that, when 0 < β < 1, R(β) increases monotonically as β increases; when β ≥ 1, R(β) decreases monotonically as β increases, β = 1 is the optimal solution of R(β). The two cases are shown separately as follows.

  1. a.

    Case of 0 < β < 1

When 0 < β < 1, R(β) is expressed as (19). An auxiliary variable λ = ξPI/β is introduced so that \( {R}_{0<\beta <1}^{\ast } \) can be rewritten as

$$ {\displaystyle \begin{array}{l}{R}_{0<\beta <1}^{\ast }=\frac{1}{1+\xi}\\ {}\left(\begin{array}{l}\beta \left(1-{\alpha}_1^{\ast}\right){\log}_2\\ {}\left(1+\frac{hg\eta P\cdot \left(h{\alpha}_1^{\ast }P+\lambda \right)}{g{\eta \sigma}_A^2\cdot \left(h{\alpha}_1^{\ast }P+\lambda \right)+\left(1-{\alpha}_1^{\ast}\right)\left( hP+{\sigma}_A^2\right){\sigma}_R^2}\right)\\ {}+\left(1-\beta \right)\left(1-{\alpha}_2^{\ast}\right){\log}_2\\ {}\left(1+\frac{hg\eta P\cdot h{\alpha}_2^{\ast }P}{g{\eta \sigma}_A^2\cdot h{\alpha}_2^{\ast }P+\left(1-{\alpha}_2^{\ast}\right)\left( hP+{\sigma}_A^2\right){\sigma}_R^2}\right)\end{array}\right)\end{array}} $$
(24)

An auxiliary function r(α, λ) is defined as

$$ r\left(\alpha, \lambda \right)=\left(1-\alpha \right)\mathrm{lo}{\mathrm{g}}_2\left(1+\frac{a\lambda + b\alpha}{c\lambda + d\alpha +e}\right) $$
(25)

where a = hgηP, b = h2gηP2, \( c=g{\eta \sigma}_A^2 \), \( d= hg\eta P{\sigma}_A^2-\left( hP+{\sigma}_A^2\right){\sigma}_R^2 \), and \( e=\left( hP+{\sigma}_A^2\right){\sigma}_R^2 \).

Taking the first and second derivatives of r(α, λ) with respect to λ, we obtain

$$ {\left.{r}^1\left(\alpha, \lambda \right)\right|}_{\lambda}\operatorname{}=\frac{1-\alpha }{\ln \kern.2em 2}\times \frac{\left( ad- bc\right)\alpha + ae}{\left(\left(a+c\right)\lambda +\left(b+d\right)\alpha +e\right)\left( c\lambda + d\alpha +e\right)} $$
(26)
$$ {\displaystyle \begin{array}{l}{r}^2\left(\alpha, \lambda \right)\left|{}_{\lambda}\right.=-\frac{1-\alpha }{\ln\ 2}\cdot \left(\left( ad- bc\right)\alpha + ae\right)\cdot \\ {}\kern2.75em \frac{2c\left(a+c\right)\lambda +\left( ad+2 cd+ bc\right)\alpha +2 ce+ ae}{{\left(\left(\left(a+c\right)\lambda +\left(b+d\right)\alpha +e\right)\left( c\lambda + d\alpha +e\right)\right)}^2}\end{array}} $$
(27)

where,

$$ \left( ad- bc\right)\alpha + ae=\left(1-\alpha \right) hg\eta P\left(\left( hP+{\sigma}_A^2\right){\sigma}_R^2\right) $$
(28)

Obviously, (ad − bc)α + ae is greater than 0, therefore, for any λ > 0, we hold r1(α, λ)|λ > 0 and r2(α, λ)|λ < 0.

According to the auxiliary function, \( {R}_{0<\beta <1}^{\ast } \) can be rewritten as

$$ {R}_{0<\beta <1}^{\ast }=\frac{1}{1+\xi}\left(\beta \cdot r\left({\alpha}_1^{\ast },\lambda \right)+\left(1-\beta \right)\cdot r\Big({\alpha}_2^{\ast },0\Big)\right) $$
(29)

Taking the first and second derivatives of \( {R}_{0<\beta <1}^{\ast } \) with respect to β, we have

$$ {R}_{0<\beta <1}^{\ast, 1}{\left|{}_{\beta}\operatorname{}=\frac{1}{1+\xi}\left(r\left({\alpha}_1^{\ast },\lambda \right)-\lambda \cdot {r}^1\right({\alpha}_1^{\ast },\lambda \Big)\right|}_{\lambda}\operatorname{}-r\left({\alpha}_2^{\ast },0\right)\Big) $$
(30)
$$ {R}_{0<\beta <1}^{\ast, 2}\left|{}_{\beta}\right.=\frac{\lambda^2}{\beta \cdot \left(1+\xi \right)}\cdot {r}^2\left({\alpha}_1^{\ast },\lambda \right)\left|{}_{\lambda}\right. $$
(31)

Both \( {R}_{0<\beta <1}^{\ast, 1}\left|{}_{\beta}\right. \) and \( {R}_{0<\beta <1}^{\ast, 2}\left|{}_{\beta}\right. \) are the function of λ. Because of β ∈ (0, 1), we have λ ∈ (ξPI, +∞). Therefore, we only discuss the change of the function \( {R}_{0<\beta <1}^{\ast, 1}\left|{}_{\beta}\right. \) and \( {R}_{0<\beta <1}^{\ast, 2}\left|{}_{\beta}\right. \) for λ ∈ (ξPI, +∞). For any λ > 0, r2(α, λ)|λ < 0, so \( {R}_{0<\beta <1}^{\ast, 2}\left|{}_{\beta}\right.<0 \) for λ ∈ (ξPI, +∞). Consequently, \( {R}_{0<\beta <1}^{\ast, 1}\left|{}_{\beta}\right. \) is monotonically decreasing for λ ∈ (ξPI, +∞). Next, we discuss whether \( {R}_{0<\beta <1}^{\ast, 1}\left|{}_{\beta}\right. \) is greater than 0 or less than 0 when λ →  + ∞. From (30), we have

$$ \underset{\lambda \to +\infty }{\lim }{R}_{0<\beta <1}^{\ast, 1}{\left|{}_{\beta}\operatorname{}=\underset{\lambda \to +\infty }{\lim}\left(\frac{1}{1+\xi}\right(r\left({\alpha}_1^{\ast },\lambda \right)-\lambda \cdot {r}^1\Big({\alpha}_1^{\ast },\lambda \Big)\right|}_{\lambda}\operatorname{}-r\left({\alpha}_2^{\ast },0\right)\left)\right) $$
(32)

where, \( {\left.\underset{\lambda \to +\infty }{\lim}\lambda \cdot {r}^1\left({\alpha}_1^{\ast },\lambda \right)\right|}_{\lambda}\operatorname{}=0 \), and

$$ \underset{\lambda \to +\infty }{\lim}\left(r\left({\alpha}_1^{\ast },\lambda \right)-r\left({\alpha}_2^{\ast },0\right)\right)=\left(1-{\alpha}_1^{\ast}\right)\mathrm{lo}{\mathrm{g}}_2\left(1+\frac{a}{c}\right)-\left(1-{\alpha}_2^{\ast}\right)\mathrm{lo}{\mathrm{g}}_2\left(1+\frac{b{\alpha}_2^{\ast }}{d{\alpha}_2^{\ast }+e}\right) $$
(33)

According to the discussion above, we already know \( {\alpha}_1^{\ast }<{\alpha}_2^{\ast } \), so we have

$$ {\displaystyle \begin{array}{l}\left(1-{\alpha}_1^{\ast}\right)\mathrm{lo}{\mathrm{g}}_2\left(1+\frac{a}{c}\right)-\left(1-{\alpha}_2^{\ast}\right)\mathrm{lo}{\mathrm{g}}_2\left(1+\frac{b{\alpha}_2^{\ast }}{d{\alpha}_2^{\ast }+e}\right)>\\ {}\left(1-{\alpha}_1^{\ast}\right)\mathrm{lo}{\mathrm{g}}_2\left(1+\frac{a}{c}\right)-\left(1-{\alpha}_1^{\ast}\right)\mathrm{lo}{\mathrm{g}}_2\left(1+\frac{b{\alpha}_2^{\ast }}{d{\alpha}_2^{\ast }+e}\right)=\\ {}\left(1-{\alpha}_1^{\ast}\right)\mathrm{lo}{\mathrm{g}}_2\left(\frac{\left(c+a\right)d{\alpha}_2^{\ast }+e\left(c+a\right)}{c\left(b+d\right){\alpha}_2^{\ast }+ ce}\right)\end{array}} $$
(34)

Besides, we can obtain

$$ {\displaystyle \begin{array}{l}\left(c+a\right)d{\alpha}_2^{\ast }+e\left(c+a\right)-\left(c\left(b+d\right){\alpha}_2^{\ast }+ ce\right)\\ {}=\left( ad- bc\right){\alpha}_2^{\ast }+ ae\\ {}=\left(1-{\alpha}_2^{\ast}\right) hg\eta P\left(\left( hP+{\sigma}_A^2\right){\sigma}_R^2\right)>0\end{array}} $$
(35)

Accordingly, we obtain

$$ \left(c+a\right)d{\alpha}_2^{\ast }+e\left(c+a\right)>c\left(b+d\right){\alpha}_2^{\ast }+ ce $$
(36)

and then

$$ \frac{\left(c+a\right)d{\alpha}_2^{\ast }+e\left(c+a\right)}{c\left(b+d\right){\alpha}_2^{\ast }+ ce}>1 $$
(37)

Further, we have

$$ \left(1-{\alpha}_1^{\ast}\right)\mathrm{lo}{\mathrm{g}}_2\left(\frac{\left(c+a\right)d{\alpha}_2^{\ast }+e\left(c+a\right)}{c\left(b+d\right){\alpha}_2^{\ast }+ ce}\right)>0 $$
(38)

and then lim λ→+∞\( \left(r\left({\alpha}_1^{\ast },\lambda \right)-r\left({\alpha}_2^{\ast },0\right)\right)>0 \). Therefore, \( {R}_{0<\beta <1}^{\ast, 1}\left|{}_{\beta}\right. \) is greater than 0 when λ →  + ∞. For λ ∈ (ξPI, +∞), because \( {R}_{0<\beta <1}^{\ast, 1}\left|{}_{\beta}\right. \) is monotonically decreasing, we obtain \( {R}_{0<\beta <1}^{\ast, 1}\left|{}_{\beta}\right. \) > 0, i.e., \( {R}_{0<\beta <1}^{\ast, 1}\left|{}_{\beta}\right. \) > 0 for β ∈ (0, 1). Therefore, \( {R}_{0<\beta <1}^{\ast } \) is monotonically increasing for any β ∈ (0, 1).

  1. b.

    Case of β ≥ 1

When β ≥ 1, R(β) is expressed as (20). Similarly, we can obtain

$$ {R}_{\beta \ge 1}^{\ast }=\frac{r\left({\alpha}_3^{\ast },\lambda \right)}{1+\xi } $$
(39)

Taking the first derivative of \( {R}_{\beta \ge 1}^{\ast } \) with respect to β, we have

$$ {R}_{\beta \ge 1}^{\ast, 1}\left|{}_{\beta}\right.=-\frac{\lambda }{\beta \left(1+\xi \right)}{r}^1\left({\alpha}_3^{\ast },\lambda \right)\left|{}_{\lambda}\right. $$
(40)

For any λ > 0, \( {r}^1\left({\alpha}_3^{\ast },\lambda \right)\left|{}_{\lambda}\right.>0 \), so we have Rβ ≥ 1∗, 1|β < 0. As a result, \( {R}_{\beta \ge 1}^{\ast } \) decreases monotonically for any β ≥ 1.

To sum up, R(β) is monotonically increasing for any β ∈ (0, 1), R(β) decreases monotonically for any β ≥ 1, and R(β) is continuous at the point β = 1, so β = 1 is the optimal solution of R(β).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Ding, X., Li, X. et al. Research on the Energy Allocation Scheme Based on SWIPT Relaying System. Mobile Netw Appl 23, 1449–1458 (2018). https://doi.org/10.1007/s11036-018-1079-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11036-018-1079-y

Keywords

Navigation