Skip to main content
Log in

A Novel Image Secret Sharing Scheme without Third-Party Scrambling Method

  • Published:
Mobile Networks and Applications Aims and scope Submit manuscript

Abstract

Values such as cellular sum in initial configurations and neighbor radius can potentially affect confusion and diffusion in cellular automata. Specifically, both confusion and diffusion characteristics in cellular automata usually are not sufficient to break up the high correlation between the secret image pixels when these two parameters are too small. Thus, using only One-Dimensional Reversible Memory Cellular Automata (ODRM-CA) to generate shadow images will lead to the leakage of original secret image’s information by some shadow images. In order to solve this problem, in this paper, we propose an image secret sharing (ISS) scheme with no third-party scrambling method. This is realized by increasing the values of cellular sum and neighbor radius to implement the scrambling process for the secret image, thus both processes of image scrambling and image secret sharing can be achieved by ODRM-CA. Experimental results show that this scheme can generate strong random shadow images to avoid leaking information of the original secret image.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bao L, Yi S, Zhou Y (2017) Combination of sharing matrix and image encryption for lossless \((k, n) \)-secret image sharing. IEEE Trans Image Process 26(12):5618–5631

    Article  MathSciNet  MATH  Google Scholar 

  2. Blakley GR (1979) Safeguarding cryptographic keys. In: AFIPS Conference proceedings, pp 313–317

  3. Chen Y, Chen F, Wu T, Hu W, Xu X (2018) A deep learning model for secure cyber-physical transportation systems. In: IEEE INFOCOM 2018-IEEE conference on computer communications workshops (INFOCOM WKSHPS). IEEE, pp 1–2

  4. Chen Y, Zhang Y, Maharjan S (2017) Deep learning for secure mobile edge computing. arXiv:1709.08025

  5. Eslami Z, Ahmadabadi JZ (2010) A verifiable multi-secret sharing scheme based on cellular automata. Inform Sci 180(15):2889–2894

    Article  MathSciNet  MATH  Google Scholar 

  6. Eslami Z, Ahmadabadi JZ (2011) Secret image sharing with authentication-chaining and dynamic embedding. J Syst Softw 84(5):803–809

    Article  Google Scholar 

  7. Eslami Z, Razzaghi SH, Ahmadabadi JZ (2010) Secret image sharing based on cellular automata and steganography. Pattern Recogn 43(1):397–404

    Article  MATH  Google Scholar 

  8. Guo T, Liu F, Wu CK, Yang CN, Wang W, Ren YW (2013) Threshold secret image sharing. In: Information and communications security. Springer, pp 404–412

  9. Hu WT, Li MC, Guo C, Ren YZ (2012) Reversible secret image sharing with steganography and dynamic embedding. Secur Commun Netw 5(11):1267–1276

    Google Scholar 

  10. Hu WT, Li MC, Guo C, Yuan LF (2015) A reversible steganography scheme of secret image sharing based on cellular automata and least significant bits construction. Math Probl Eng 2015:1–11

    MathSciNet  MATH  Google Scholar 

  11. Jolfaei A, Wu XW, Muthukkumarasamy V (2016) On the security of permutation-only image encryption schemes. IEEE Trans Inf Forens Secur 11(2):235–246

    Article  Google Scholar 

  12. Kanso A, Ghebleh M (2017) An efficient (t, n)–threshold secret image sharing scheme. Multimed Tools Appl 76(15):16369–16388

    Article  Google Scholar 

  13. Katz J, Lindell Y (2014) Introduction to modern cryptography. CRC Press

  14. Lin PY (2015) Double verification secret sharing mechanism based on adaptive pixel pair matching. ACM Trans Multimed Comput Commun Appl (TOMM) 11(3):36

    Google Scholar 

  15. Liu L, Wang AH, Chang CC, Li ZH (2014) A novel real-time and progressive secret image sharing with flexible shadows based on compressive sensing. Signal Process Image Commun 29(1):128–134

    Article  Google Scholar 

  16. Menezes AJ, Van Oorschot PC, Vanstone SA (1996) Handbook of applied cryptography. CRC Press, Boca Raton

    MATH  Google Scholar 

  17. Ott E (2002) Chaos in dynamical systems. Cambridge University Press

  18. Shamir A (1979) How to share a secret. Commun ACM 22(11):612–613

    Article  MathSciNet  MATH  Google Scholar 

  19. Thien CC, Lin JC (2002) Secret image sharing. Comput Graph 26(5):765–770

    Article  Google Scholar 

  20. Toffoli T, Margolus NH (1990) Invertible cellular automata - a review. Physica D: Nonlinear Phenom 45 (1-3):229–253

    Article  MathSciNet  MATH  Google Scholar 

  21. Ulutas G, Ulutas M, Nabiyev VV (2013) Secret image sharing scheme with adaptive authentication strength. Pattern Recogn Lett 34(3):283–291

    Article  MATH  Google Scholar 

  22. Voyatzis G, Pitas I (1996) Chaotic mixing of digital images and applications to watermarking. In: Proceedings of European conference on multimedia applications, services and techniques (ECMAST’96), pp 687–695

  23. Wang RZ, Su CH (2006) Secret image sharing with smaller shadow images. Pattern Recogn Lett 27 (6):551–555

    Article  Google Scholar 

  24. Wu XT, Ou DH, Liang QM, Sun W (2012) A user-friendly secret image sharing scheme with reversible steganography based on cellular automata. J Syst Softw 85(8):1852–1863

    Article  Google Scholar 

  25. Wu XT, Sun W (2013) Secret image sharing scheme with authentication and remedy abilities based on cellular automata and discrete wavelet transform. J Syst Softw 86(4):1068–1088

    Article  Google Scholar 

  26. Yang CN, Chang WJ, Cai SR, Lin CY (2014) Secret image sharing without keeping permutation key. In: Information and communications technologies (ICT 2014), pp 1–7

  27. Zhou ZL, Yang CN, Cao Y, Sun XM (2018) Secret image sharing based on encrypted pixels. IEEE Access 6:15021–15025

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China Grant No. 61802097 and Zhejiang Provincial Natural Science Foundation of China (No. LY16F020019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Di Zhou.

Appendix

Appendix

Fig. 10
figure 10

250 shadows of (2, n)-PISS scheme using GF(251) without scrambling process

Fig. 11
figure 11

255 shadows of (2, n)-PISS scheme using GF(28) without scrambling process

Fig. 12
figure 12

300 shadows of (2, n) ODRM-CAISS scheme without scrambling process

Fig. 13
figure 13

250 shadows of (2, n)-PISS scheme using GF(251) with scrambling process

Fig. 14
figure 14

255 shadows of (2, n)-PISS scheme using GF(28) with scrambling process

Fig. 15
figure 15

300 shadows of (2, n) ODRM-CAISS scheme without scrambling process

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, W., Yao, Y., Zhou, D. et al. A Novel Image Secret Sharing Scheme without Third-Party Scrambling Method. Mobile Netw Appl 24, 1317–1335 (2019). https://doi.org/10.1007/s11036-018-1168-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11036-018-1168-y

Keywords

Navigation