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Abstract This paper formulates the problem of build-

ing a context-aware predictive model based on user di-

verse behavioral activities with smartphones. In the

area of machine learning and data science, a tree-like

model as that of decision tree is considered as one of

the most popular classification techniques, which can be

used to build a data-driven predictive model. The tra-

ditional decision tree model typically creates a number

of leaf nodes as decision nodes that represent context-

specific rigid decisions. However, in many practical sce-

narios within the context-aware environment, the gen-

eralized outcomes could play an important role to effec-

tively capture user behavior. In this paper, we propose

a behavioral decision tree, “BehavDT” context-aware

model that takes into account user behavior-oriented

generalization according to individual preference level.

The BehavDT model outputs not only the generalized

decisions but also the context-specific decisions in rel-

evant exceptional cases. The effectiveness of our Be-

havDT model is studied by conducting experiments on

individual user real smartphone datasets. Our experi-

mental results show that the proposed BehavDT context-

aware model is more effective when compared with the

traditional machine learning approaches, in predicting

user diverse behaviors considering multi-dimensional con-

texts.
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1 Introduction

Nowadays, machine learning based predictive analyt-

ics and context-aware computing have become active

research areas, particularly for building user-centric in-

telligent and adaptive systems in the domain of Inter-

net of Things (IoT) [22]. Smartphones are considered

as one of the most important IoT devices due to the

popularity of smartphone-enabling technologies includ-

ing sensors, ubiquitous connectivity, context-awareness
etc. in the environment of IoT [3]. These smartphones

are frequently used by the users worldwide, in their var-

ious daily life activities such as voice communication,

apps usage, social networking, healthcare services, traf-

fic monitoring, tourist guide, online shopping etc. These

devices can record various contextual information and

corresponding users’ activities with their phones through

the device logs [19]. Predicting user context-aware be-

havioral activities utilizing phone log datasets can be

used to build various intelligent assistive systems, e.g.,

context-aware intelligent recommendation systems [20]

[31] [36]. Throughout this paper, we consider users’

phone call assistive services by effectively predicting

their diverse behavioral activities in relevant contexts,

as an example of our context-aware model. Users’ such

behavioral activities with their phones are not static in

the real world, may vary in different contexts, such as

“when” that represents temporal context, “where” that

represents spatial context, or “why” that might repre-

sent social context etc. In this paper, we aim to design
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a behavioral decision tree machine learning classifica-

tion approach for the purpose of building an effective

context-aware predictive model based on these multi-

dimensional contexts.

Researchers have proposed several popular machine

learning classification algorithms such as ZeroR, Naive

Bayes, Decision Tree, Support Vector Machine, K-Nearest

Neighbors, Logistic Regression etc. with the ability of

building a prediction model [7]. Among the classifica-

tion approaches, a tree-like model, i.e., decision tree

model is considered as one of the most popular and

well-known approach in the area of data-driven context-

aware computing. In particular, a number of researchers

[4] [9] [13] [23] [28] have used decision tree classification

technique to model mobile users’ behavior for various

purposes. However, in many user-centric context-aware

cases, decision tree classification rules are less perform-

ing and low reliable while making corresponding be-

havioral decisions of a smartphone user [22]. Accord-

ing to [6], decision trees cannot ensure that a discov-

ered classification rule will have a high predictive ac-

curacy due to over-fitting problem and inductive bias.

Such issues may arise because of lacking generalization

while making decisions in a user-centric context-aware

model. Moreover, the traditional decision tree model

does not provide the flexibility to set users’ preferences

that may vary from user-to-user according to their be-

havioral consistency, leading to rigid decision making.

Thus, the research question addressing in this paper is

- How to minimize these issues and build an effective

user-centric context-aware predictive model?

In order to answer this research question, in this

paper, we present a behavioral decision tree (BehavDT)
context-aware model that minimizes the above men-

tioned issues and makes more accurate decisions for

unseen test cases. This paper significantly revises our

earlier paper [27], particularly, in terms of designing

generalized tree and experimental analysis. In our Be-

havDT model, once the dataset is ready to process, we

construct a behavioral decision tree rather than the tra-

ditional decision tree [18]. We calculate the entropy and

information gain to select the best contextual feature,

and perform behavior-oriented generalization while cre-

ating the nodes. The generalization is taken into ac-

count for a particular confidence level preferred by the

users, which may vary from user-to-user in the real

world. While generating nodes, the corresponding confi-

dence value is calculated by determining the ratio of the

dominant behavior for the associated context values. In

our BehavDT model, the number of produced nodes is

not static, may differ depending on the preferred con-

fidence level, because of performing behavior-oriented

generalization. Once the complete tree has been built,

both the interior nodes and leaf nodes are used to make

the context-aware decisions. As a result, our BehavDT

context-aware model is able to capture not only the

general behavior of an individual user but also the spe-

cific exceptions in relevant multi-dimensional contexts,

and improves the prediction accuracy for unseen test

cases.

The contributions of this work can be summarized

as follows.

– We propose a behavior-oriented generalization ap-

proach while designing a decision tree.

– We present a behavioral decision tree (BehavDT)

context-aware model for effectively predicting user-

centric context-aware cases considering relevant multi-

dimensional contexts.

– We have conducted experiments on the real mobile

phone datasets to evaluate our BehavDT model on

unseen context-aware test cases.

The rest of the paper is organized as follows. Section

2 reviews background study and related work. In Sec-

tion 3, we present our behavioral decision tree context-

aware model. In Section 4, we report the evaluation

results. Some key observations of our model are sum-

marized in Section 5. Finally, Section 6 concludes this

paper.

2 Background Study and Related Work

In the area of machine learning and data science, clas-

sification is well-known and most popular technique for

building prediction models utilizing the given datasets

[7]. Researchers have proposed many classification al-

gorithms that can be used to build a predictive model.

A significant number of work has been done in the

area of context-aware mobile analytics based on ma-

chine learning classification techniques. Research that

relies on users’ multi-dimensional contextual informa-

tion that are collected from individuals’ smartphone

data is mostly application specific. Various machine

learning classification techniques are used in various

context-aware applications. Among these, ZeroR is the

simplest classification approach that simply predicts

the majority category class [33]. This classification tech-

nique is mainly used as a benchmark of all the classifi-

cation algorithms. Recently, Sarker et al. [30] have used

ZeroR classification technique as a benchmark in ana-

lyzing performance of various context-aware models.

Naive Bayes [10] in one of the most popular proba-

bilistic based classification algorithms, which can fore-

see the class membership probabilities [7]. In this classi-

fier, the effect of a contextual attribute in the dataset on
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a given class is independent of those of other attributes.

Pejovic et al. [14] have designed a model for the pur-

pose of intelligently handling mobile interruptions. In

their model, they have considered naive Bayes as one

of the classification techniques. In addition to build a

traditional predictive model, this classifier can also be

used to handle the noisy instances in the datasets to

make the model robust. The robustness of a predic-

tive model is important as such noisy instances may

increase the complexity of the inferred model, may in-

crease the over-fitting problem, and thereby the overall

prediction accuracy of the model may decrease. For in-

stance, Sarker et al. [23] have shown that how naive

Bayes classifier is used to make a context-aware pre-

dictive model robust. Another classification algorithm,

K-nearest neighbors [1] is also popular to build a pre-

dictive model in the area of machine learning. It is also

known as instance-based learning, or lazy learning. Sup-

port vector machines [11], is another popular classifica-

tion technique used widely for various predictive ana-

lytics. To do this, a hyperplane is chosen, which is a

line that can distinguish the data points into different

classes. A logistic function based popular classification

approach is known as Logistic Regression [12]. Typi-

cally, logistic regression estimates the probabilities us-

ing that logistic function, which is also referred to as

sigmoid function. In a context-aware analysis, Sarker

et al. [30] have shown the effectiveness of these classi-

fication models considering multi-dimensional contexts

through a range of experimental analysis.

A tree-like model is capable to build a prediction

model as well as generating classification rules for mak-

ing decisions. A straightforward classification approach

is OneR proposed by Holte et al. [8]. OneR is a sim-

ple one rule based classification algorithm. In this ap-

proach, a one-level decision tree is constructed from

the training records and the rules are extracted from

that tree, which are linked with frequent classes in the

given dataset. Decision tree is a very well-known and

most discussed technique for classification and predic-

tion, which is used most frequently in the area of ma-

chine learning, data science, and context-aware mobile

analytics as well. The first algorithm is known as ID3

decision tree [17] that constructs a tree by employing

a top-down approach following a greedy search. To se-

lect the best attribute it uses the statistical measures

entropy and information gain. Based on the ID3 algo-

rithm, a modified and improved algorithm is proposed

by Quinlan, namely C4.5 algorithm [18], which handles

the attributes more effectively. PART is a hybrid classi-

fication algorithm was proposed in [5]. In PART, a par-

tial decision tree is constructed by using a divide and

conquer approach. Like the PART algorithm, DTNB

proposed by Sheng et al. [32] is another hybrid classi-

fication technique for generating classification rules. It

uses both the decision table and naive Bayes classifier.

The produced rules can be used to predict the unseen

classes for a particular condition. These classification

techniques are able to model user behavioral activities

based on multi-dimensional contexts [30]. In another

study, Pielot et al. [16], have used similar classifiers in

their instance message based mobile analytics to predict

the attentiveness.

Among the classification techniques discussed above,

decision tree [18] is one of the most popular because of

having several advantages, such as easy to interpret;

ability to handle multi-dimensional attributes; process-

ing speed and simplicity in design; acceptable predic-

tion accuracy; and the ability to generate human un-

derstandable rules [34] [35]. Decision tree classification

approach is frequently used in the area of context-aware

systems and services. For instance, Hong et al. [9] pro-

pose a context-aware model based on decision tree clas-

sifier for the purpose of providing personalized services.

In their approach, they utilize context historical data

to build the model. Lee et al. [13] have proposed a de-

cision tree based model for the purpose of deploying

personalized services for the benefit of mobile phone

users. In [4], Zulkernain et al. have designed an intel-

ligent mobile interruption management system to in-

telligently assist the mobile phone users in their daily

activities. In their system, they use decision tree rule

based technique to make their system intelligent. In

[23], Sarker et al. have used a decision tree classifier in

their machine learning based user behavior model uti-

lizing contextual smartphone data. In addition to these

approaches, Pielot et al. [15] have designed a model to

predict phone call availability. In their model, they have

considered multiple decision trees like random forest

classification approach to make the model more effec-

tive. Similarly, random forest classification model has

also been used in Sarker et al. [31] and Sarker et al.

[29] for modeling smartphone apps usage and to build

an ensemble learning based intelligent telephony model

respectively. Overall, a tree like model has been used

widely in the area of context-aware mobile analytics.

The authors in [30] have also shown through the exper-

imental analysis that a tree-based classification model

is more effective to model and predict mobile usage be-

havior. However, in many context-aware cases, decision

tree causes over-fitting problem and the generated clas-

sification rules mostly have low reliability [22]. Such

issues may arise because of lacking generalization while

making decisions in a context-aware model.

Unlike the above classification techniques and context-

aware models, in this paper, we present a behavioral
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decision tree machine learning classification approach

that takes into account behavior-oriented generalization

and build an effective user-centric context-aware predic-

tive model.

3 Methodology: A BehavDT Model

In this section, we present our behavioral decision tree

(BehavDT) context-aware model including the behavior-

oriented generalization approach by taking into account

multi-dimensional contexts.

3.1 Approach Overview

Our approach accepts as input source a phone log dataset

of an individual user consisting of contextual informa-

tion and her mobile phone usage history. From this

multi-dimensional contextual data, our model is able to

predict their usage behavior by going through several

processing steps. We first organize the dataset with rel-

evant contexts such as temporal, spatial, or social, and

corresponding mobile phone usage behavior of individ-

uals. After that, we pre-process the datasets and pre-

pare for building a decision tree classification model.

Once the train dataset is ready to process, we then

construct a behavioral decision tree rather than the

traditional decision tree. In our BehavDT model, we

take into account the precedence of contexts and per-

form behavior-oriented generalization while designing

the tree. To create a node, the confidence value is cal-

culated based on the dominant behavior and the asso-

ciated contexts. Once the behavioral decision tree with

multi-level contexts has been built, both the interior

and leaf nodes are used as the decision making nodes.

As a result, this model is able to capture not only the

general behavior of a user but also the exceptions for

the given context-aware cases. Finally, we evaluate the

resultant context-aware model using the test datasets.

Figure 1 shows an overview of our behavioral decision

tree context-aware model.

3.2 Context Pre-processing

As we take smartphone raw data as input data source,

shown in Figure 1, we need to prepare and preprocess

the raw dataset for designing the behavioral decision

tree. In our work, we use the reality mining datasets

[2] that were collected by Massachusetts Institute of

Technology, USA for their reality mining project. We

first consider the contextual information such as tem-

poral, spatial, or social contexts that might have an in-

fluence on individuals’ usage behavior and organize the

datasets by ignoring others metadata. We then trans-

form the continuous contextual data into meaningful

categorical values. In this process, we first discretize the

continuous time-series data into time periods. For this

purpose, we employ our earlier BOTS technique [26]

that generates a number of behavior-oriented time seg-

ments according to their behavioral patterns. We also

generate data-centric social context to preprocess the

social relational context. While generating data-centric

social context, it represents individual’s one-to-one re-

lationship using their unique contact numbers in the

dataset [21]. Calendar based social situations such as

meeting, lunch break, lecture etc. could be another type

of social contextual information for an individual user

[25]. For spatial context, we use individual’s recorded

location, such as home, office, market, MIT, Harvard

etc. exist in the given datasets.

3.3 Behavior-Oriented Generalization

This generalization is one of the significant features of

our BehavDT context-aware model. It creates nodes ac-

cording to the similar behavioral patterns of individ-

ual users for a particular confidence level preferred by

them, say, 80%. Using this generalization process, we

create interior node as a generalized node rather than

creating a number of single context-value specific sep-

arate nodes. Let’s consider an example of phone call

response behavior of an individual from several social

relationships, say, friend, colleague, XYZ, boss, or un-

known, when she is in a meeting. Rather than produc-

ing all separate branches for each relationship value in

the tree, we first generalize these activities into one be-

havior class (e.g., decline) by assuming the calculated

confidence satisfies user preferred threshold (say, 80%)

and create a ‘decline’ node. Such generalized node is

determined by considering the dominant characteris-

tics that has the highest number of occurrences for that

associated contexts. As there is an exceptional behav-

ioral activities for boss’s calls, (i.e., different behavior

class of the generalized parent node, which is generated

earlier), we create additional child node by specifying

the additional context level and corresponding behavior

(e.g., answer). Hence, the first created generalized node

is called the interior or internal node, and the second

node containing an exception with it’s parent node, is

called the leaf node as no further exceptions are found

in this branch. Figure 2 shows the generated branches

of traditional decision tree and the corresponding gen-

eralization of our BehavDT model respectively for the

above scenario.

The process for behavior-oriented node generaliza-

tion is set out in Algorithm 1. Input data includes
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Fig. 1: An overview of our BehavDT context-aware predictive model.

(a) Nodes in traditional decision tree.
(b) Nodes based on behavior-oriented
generalization in BehavDT.

Fig. 2: An example of node creation considering contextual features, where Fig 2a shows the nodes created in

traditional decision tree [18] and Fig 2b shows the corresponding nodes created based on behavior-oriented gener-

alization in our BehavDT model.

training dataset: DS = X1, X2, ..., Xn, which contains

a set of training instances and their associated class

labels, context-association assoc, user preferred con-

fidence threshold t, and output data is the general-

ized node GN . In Algorithm 1, the method identify-

DominantBehavior() determines the dominant behav-

ior for a particular assoc, which simply represents the

most occurrences comparing with others. We define the

dominant behavior BHdominant of a user for a partic-

ular assoc, which represents a particular activity that

most commonly occurs among a list of behavioral ac-

tivities for that assoc by taking into account the rele-

vant activity instances in the given dataset. Let Oc =

{Oc1, Oc2, ..., Ocn} be a list of activity occurrences in

percentage (%) and n is the number of behavior classes

for a particular assoc, then BHdominant = MAX(Oc1, Oc2, ..., Ocn)

represents the dominant behavior for that assoc. An-

other method calculateConfidence() calculates the con-

fidence value by determining the ratio of the domi-

nant behavior and corresponding assoc. This confidence

measures the strength of a node whether it is reliable to

make a decision or not for a particular assoc. Finally,

based on this confidence value and dominant behavior

this algorithm creates the generalized node GN for that

particular assoc.

3.4 Decision Nodes in BehavDT

A BehavDT is a tree structure that consists of different

nodes such as a root node, interior and/or leaf nodes,

and associated branches. Each branch in BehavDT de-

notes a contextual test on a context-value (e.g., is in-

terpersonal social relationship value ‘boss’?), and each

node (interior or leaf) denotes the behavioral outcome

of that test which is represented by a behavior activity

class label (e.g., answer). The topmost node in the tree
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Algorithm 1: Behavior-Oriented Generalization

Data: Mobile phone dataset DS = X1, X2, ..., Xn //
each instance Xi contains a number of nominal
context-values, context-association assoc, user
preferred confidence threshold t

Result: generalized node: GN

1 Procedure NodeGeneralization (DS, assoc, t);
2 //create subset containing the particular

context-association
3 DSsub ← subset of DS that contains assoc
4 if DSsub 6= φ then
5 //identify the dominant behavior that represents

the most occurrences.
6 BHdominant ←

identifyDominantBehavior(DSsub)
7 //calculate the confidence for that identified

dominant behavior
8 tconf ←

calculateConfidence(DSsub, BHdominant)
9 if tconf >= t then

10 //create new generalize node in the tree
11 GN ← createNode()
12 // assign behavior class to the new node
13 GNbehavior ← BCdominant

14 end
15 return GN ;

16 end

is called the root node which is an empty node. The

all other nodes are created according to the test and

corresponding behavioral outcome.

In order to determine all the decision nodes in Be-

havDT, we first construct a complete BehavDT based

on multi-dimensional contexts. To build a complete Be-

havDT, we follow a top-down approach, starting from a

root node. The tree is partitioned into behavioral activ-

ity classes distinguished by the values of the most dis-

criminant context determined by calculating the prece-

dence of contexts. Such precedence of contexts is deter-

mined by calculating the entropy and information gain.

Formally, entropy is defined as below [33]:

H(S) = −
∑

x∈X p(x)log2p(x) (1)

Where, S is the current data set for which entropy is

being calculated, X represents a set of classes in S, p(x)

is the proportion of the number of elements in class x to

the number of elements in set S. The formal definition

of information gain is as below [33]:

IG(A,S) = H(S)−
∑

t∈T p(t)H(t) (2)

Where, H(S) is the entropy of set S, T represents

the subsets created from splitting set S by attribute A

such that S = ∪t∈T t, p(t) is the proportion of the num-

ber of elements in t to the number of elements in set S,

H(t) is the entropy of subset t.

We dynamically use this precedence of contexts in

each node to effectively choose the next significant con-

text rather than taking into account same context in

each level. Once the root node of the BehavDT has been

determined, we then create the child nodes for the asso-

ciated contexts. To create nodes, we perform behavior

oriented generalization that has been discussed earlier.

The algorithm continues recursively by adding new sub-

trees to each context branch and terminates when all

the instances in the reduced training set belong to the

same behavior class, or getting the context list empty.

The overall step by step procedure for learning the be-

havioral decision tree as follows:

1. The approach takes input dataset: DS = X1, X2, ..., Xn,

where each instance Xi contains a number of con-

textual attributes and corresponding behavior class

BH.

2. Create a root node and assign all training instances

to the root of the tree.

3. For each contextual attribute:

– Split the training dataset into subsets, in such

a way that each subset contains data with the

same value of the attribute.

– Compute entropy and information gain from the

subsets using formulas defined in Equation 1,

and Equation 2.

4. Determine the best contextual attribute based on

information gain value and set this feature to be

the splitting criterion at the current node.

5. Partition all instances according to attribute value

of the best feature.

6. Denote each partition as a child node of the current

node.

7. For each child node:

– If the child node is “pure”, i.e., all the instances

contain same behavior class, label it as a leaf

node with that class and return.

– If not then create a behavior-oriented general-

ized node using Algorithm 1 and set the gener-

alized node as the current node. If no generalized

node found create all the context-specific nodes.

8. Recursively continue this procedure for all branches

until generating the complete behavioral decision

tree according to the relevant contexts.

The final result of our BehavDT is a multi-level tree

with a number of interior and leaf nodes, and their

associated contexts. Figure 3 shows an example of a

behavioral decision tree containing multi-dimensional

contexts and corresponding phone call behavior classes

for a particular confidence preference 80%. In Figure
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Fig. 3: An example of a behavioral decision tree including interior and leaf decision nodes based on contexts.

3, S represents social situation context, such as meet-

ing; L represents spatial context location, such as of-

fice, home; R represents social relational context such

as boss, mother, friend, unknown; and T represents

temporal context such as Monday morning, Monday

evening etc. Once the tree has been built, both the in-

terior and leaf nodes are used as the decision making

nodes in our BehavDT model. Hence, Table 1 gives an

overview of the generated decision nodes in the tree

shown in Figure 3.

4 Evaluation and Experimental Results

To evaluate our proposed BehavDT context-aware model,

we have conducted experiments on individual users’

smartphone datasets. We have conducted experiments

on ten phone log datasets collected by Massachusetts

Institute of Technology (MIT) over the period of nine

months for their Reality Mining project [2]. These datasets

consist of multi-dimensional contexts like temporal, spa-

tial, or social contexts, and corresponding phone usage

behavior of the users. These are represented as U01,

U02, ..., U10 for ten individual mobile phone users re-

spectively for experimental purpose. In the following,

we discuss our several findings in experiments.

4.1 Evaluation Metric

To evaluate our BehavDT context-aware model, we uti-

lize a 10-fold cross validation technique on each dataset.

For this, we randomly divide each dataset into ten sub

parts. We then build our model using nine parts and

use the remaining part as test dataset, and measure

the effectiveness in terms of prediction accuracy. For

this, we compare the predicted response with the ac-

tual response (i.e., the ground truth) and compute pre-

cision, recall, and overall accuracy. If TP denotes true

positives, FP denotes false positives, TN denotes true

negative, and FN denotes false negatives, then these

evaluation metrics are defined formally as below [7]:

Precision =
TP

TP + FP
(3)

Recall =
TP

TP + FN
(4)

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

4.2 Effect of Generalization on Decision Nodes

To show the effect of generalization on the number

of decision nodes, we have shown the results in Fig-

ure 4 for both the traditional decision tree and the

proposed BehavDT context-aware model. To show the

fare comparison, we use the same datasets mentioned

above for each model and show the average results. If

we observe Figure 4, we see that our BehavDT model

produces comparatively less number of decision nodes

for different confidence levels, 100%, 90%,..., 60%, pre-

ferred by individuals. The reason is that our BehavDT

model performs behavior-oriented generalization. On

the other hand, traditional decision tree model does

not take into account such generalization. It takes into

account all the leaf position nodes as decision nodes
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Table 1: An overview of the decision nodes in the tree shown in Figure 3

Node No Node Type Behavior Associated Contexts
Node 01 Interior Decline Meeting
Node 02 Interior Decline Unknown
Node 03 Leaf Answer Meeting, Boss
Node 04 Leaf Answer Office, Mother
Node 05 Leaf Decline Office, Friend, Mon[Mor]
Node 06 Leaf Answer Office, Friend, Mon[Eve]
Node 07 Leaf Answer Unknown, Home

and makes the number of decision nodes unnecessar-

ily large. The behavior-oriented generalization in Be-

havDT model subsumes several context-specific nodes

into one generalized node according to the similar be-

havioral patterns of an individual user. As a result, our

BehavDT model significantly reduces the total number

of decision nodes effectively while comparing with tra-

ditional decision tree model for a particular confidence

level, shown in Figure 4.

Fig. 4: The effect of generalization on the number of

decision nodes in our BehavDT model.

4.3 Effect of Confidence on Precision and Recall

In this experiment, we show the effect of confidence on

the prediction results for different users utilizing their

datasets. For this, we first illustrate the prediction re-

sults in terms of precision and recall by varying the

conference values. We take into account the confidence

values from 100% (maximum) below to 60% (lowest).

Since confidence is associated to accuracy level, we are

not interested to take into account below 60% as confi-

dence preference in this experiment. Figure 5 and Fig-

ure 6 show the relationship between precision and recall

for different confidence thresholds for two users utilizing

their phone datasets. As our model is individual user-

centric, we illustrate the results for individual users.

Typically, higher precision results in a lower recall

and vice-versa. In our BehavDT model, we use a con-

fidence preference for making reliable prediction in a

particular context, to decide whether a prediction re-

sult is significant or not for the user. If we observe Fig-

ure 5 and Figure 6, we see that recall increases with

the decrease of confidence levels. The main reason for

increasing recall with the low confidence threshold is

that a large number of context-specific decision nodes

satisfy this low confidence threshold and are subsumed

into the generalized one. Thus, the generalized node is

able to make predictions for similar context-aware test

cases considering low confidence. With the increasing

of the confidence level, the number of context-specific

decision nodes satisfying this threshold are decreasing,

and as a result recall is also decreasing. On the other

hand, precision increases with the increase of confidence

level. If the confidence threshold is low, large number of

incorrect predictions are generated. With the increasing

of the confidence level, the incorrect predictions are de-

creasing and the resulting precision is increasing. Using

a higher confidence threshold results in higher precision

but lower recall, and using a lower confidence thresh-

old results in lower precision but higher recall. By de-

fault, we use 80% confidence preference to select deci-

sion nodes for building the prediction model assuming

the common preference of all users. Further, we allow

users to configure the recall-precision trade off based on

their individual preferences.

4.4 Effectiveness Comparison

In this experiment, we show the effectiveness of our Be-

havDT model in terms of prediction accuracy, compar-

ing it with existing popular classification approaches.

Among the baseline approaches, decision tree (DT) is

used mostly to build a context-aware model for the pur-

pose of providing various mobile services [9] [13] [4] [23],

that are discussed in Section 2. In addition to deci-
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Fig. 5: Prediction results in terms of precision and

recall using different confidence levels for user U01.
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Fig. 6: Prediction results in terms of precision and

recall using different confidence levels for user U02.

sion tree, ZeroR, naive Bayes (NB), support vector ma-

chines (SVM), logistic regression (LR), k-nearest neigh-

bor (KNN) are also used in our comparison purposes.

The details of these classification based context-aware

models are discussed in Section 2. Although, decision

tree model is highly relevant to our BehavDT model,

we compare with all these baseline approaches in our

effectiveness analysis.

In our effectiveness analysis, we have shown the com-

parison of prediction results of different classification

models mentioned above for different users. Figure 7

and Figure 8 show the prediction results in terms of

accuracy (%) for various context-aware classification

models for user U01 and U02 respectively. For the pur-

pose of fare comparison, we utilize the same datasets in

both training and testing sets for all these approaches.

From Figure 7, and Figure 8, we find that our Be-

havDT context-aware model consistently outperforms

traditional machine learning approaches for predicting

individual user’s behavior in multi-dimensional contexts

that we have considered in this study. The reason is that

we take into account behavior oriented-generalization in

our BehavDT model and use the generalized nodes as

decision nodes. In addition, we also take into account

context-specific nodes as decision nodes for relevant ex-

ceptions. As a result, our BehavDT model not only de-

termines the significant decision nodes but also able to

capture both the general behavior of an individual user

and the specific exceptions as well. Such capability of

our BehavDT model improves the prediction accuracy

for different users shown in Figure 7 and Figure 8, and

makes the resultant machine learning based user-centric

context-aware predictive model more effective.

5 Discussion: Traditional DT vs BehavDT

Overall, our BehavDT model is applicable to effectively

predict individual mobile phone users behavior in their

various daily life situations. Compared to the existing

classification approaches, the prediction accuracy (%)

has been improved when our BehavDT model is used,

as shown in Figures 7, 8. Among these existing classi-

fiers, decision tree [18] is the most relevant technique

with our BehavDT in terms of the tree-like structure.

In the following, we highlight some key differences be-

tween traditional decision tree [18] and our proposed

BehavDT model for predicting user diverse behaviors

in multi-dimensional contexts.

– Individualized preference-oriented: The traditional

decision tree does not provide flexibility to set user

preferences that lead to rigid decision making. Such

rigid decisions might not be suitable to model indi-

viduals’ behavioral activities, because of their day-

to-day variations in their daily life activities. On

the other hand, our BehavDT model specifically de-

signed to build user-centric context-aware predictive

model that takes into account user preferences. As

the preferences may vary from user-to-user in the

real world, our BehavDT model dynamically adapts

such variations while designing the tree.

– Behavior-oriented generalization: The traditional de-

cision tree does not consider user behavior-oriented

generalization. As a result, it produces a large num-

ber of leaf position nodes that may cause over-fitting

problem of the tree. On the other hand, while de-

signing our BehavDT, we have performed general-

ization according to individual’s similar behavioral

patterns for a particular confidence level. This gen-

eralization can play a role not only to capture in-

dividuals’ general behaviors but also to minimize

the over-fitting problem by creating the generalized

nodes.

– Tree structure: The traditional decision tree typi-

cally generates leaf nodes containing the class val-

ues. On the other hand, in our BehavDT model,

each branch denotes a test on a context value, and

each node either interior or leaf may denote the out-

come containing the behavior class for that test.
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Fig. 7: Comparison of prediction results in terms of

accuracy (%) of different classification models for

user U01.

Fig. 8: Comparison of prediction results in terms of

accuracy (%) of different classification models for

user U02.

Thus, unlike the traditional decision tree, a num-

ber of interior nodes containing the class values may

exist in our BehavDT model.

– Decision making node: In the traditional decision

tree, all the leaf position nodes are typically consid-

ered as decision nodes. As a result, in many cases

such decision nodes become low reliable, i.e., less

performing in a user-centric context-aware predic-

tive model. On the other hand, we do not depend

on node’s position for choosing the effective decision

nodes. Both interior and leaf nodes generated in the

tree, are used as decision nodes in our BehavDT

context-aware model.

– Effectiveness: The effectiveness of the context-aware

model designed by the traditional decision tree might

be low in terms of prediction accuracy, when com-

paring with our model. On the other-hand, our Be-

havDT context-aware model is more effective to pre-

dict user diverse behaviors in their various day-to-

day situations.

The above key differences make our BehavDT model

more effective to build a user-centric context aware pre-

dictive model over the traditional decision tree model.

As data-driven RecencyMiner [24] can play a significant

role in modeling user behavior, our BehavDT model can

also be used for further analysis in terms of recency in

relevant context-aware problems and services.

6 Conclusion

In this paper, we have presented a behavioral deci-

sion tree, BehavDT machine learning approach to build

user-centric context-aware predictive model. Our Be-

havDT model predicts smartphone user behavioral ac-

tivities based on multi-dimensional contexts, such as

temporal, spatial, or social contexts. In our BehavDT

model, we have incorporated behavior-oriented general-

ization while designing the decision tree. We have taken

into account both the interior and leaf nodes as the

decision making nodes, to effectively capture user di-

verse behaviors for their various day-to-day context-

aware situations. We have conducted experiments on

individuals’ real mobile phone datasets containing their

behavioral activities and corresponding contextual in-

formation. The experimental results have shown that

our BehavDT model not only determines the signifi-

cant decision nodes but also able to capture both the

general behavior of an individual user and the specific

exceptions as well. Thus, BehavDT model have shown

the effectiveness for building user-centric context-aware

predictive model. Although, we use phone call behav-

ior example to make understand this BehavDT model,

it can also be applicable to other user-centric applica-

tion domains, where user diverse behavioral activities

are impacted by the surrounding contexts. As a future

work, we plan to asses the usability of this machine

learning context-aware model in the application level.
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