Skip to main content
Log in

Semi-Supervised Subspace Learning for Pattern Classification via Robust Low Rank Constraint

  • Published:
Mobile Networks and Applications Aims and scope Submit manuscript

Abstract

Feature subspace learning is a crucial issue in pattern analysis. However, it remains challenging when partial samples are unlabeled, which will cause weak discrimination. In this paper, we present a novel semi-supervised learning model that is capable of utilizing labeled and unlabeled training data simultaneously to learn discriminative feature subspace while preserving their locality. To achieve this goal, we joint learning feature subspace and completed labels. In the framework, low rank representation model is firstly exploited to explore the similarity relationship among all training samples, including labeled and unlabeled data. Then, the learned representation coefficients are used to generate a dynamic neighbor graph for designing the locality preservation constraints on both of label propagation and feature subspace. Finally, the prediction and true label are used to enforce the discrimination of feature subspace in the semantic space. Extensive experiment indicates that our proposed approach is more competitive than other comparison methods, while the model shows more robustness when training datasets are contaminated with noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wu Q, Li Y, Lin Y (2017) The application of nonlocal total variation in image denoising for mobile transmission[J]. Multimed Tools Appl 76(16):17179–17191

    Article  Google Scholar 

  2. Liu S, Pan Z, Cheng X (2017) A novel fast fractal image compression method based on distance clustering in high dimensional sphere surface[J]. Fractals 25(04):1740004

    Article  Google Scholar 

  3. Liu S, Bai W, Liu G et al (2018) Parallel fractal compression method for big video data[J]. Complexity 2016976

  4. Turk M, Pentland A (1991) Eigenfaces for recognition[J]. J Cogn Neurosci 3(1):71–86

    Article  Google Scholar 

  5. Belhumeur PN, Hespanha JP, Kriegman DJ (1997) Eigenfaces vs. fisherfaces: Recognition using class specific linear projection[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence 7:711–720

    Article  Google Scholar 

  6. Cai D, He X, Zhou K, Han J, Bao H (2007) Locality sensitive discriminant analysis[C]. International Joint Conference on Artificial Intelligence (IJCAI):1713–1726

  7. Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding[J]. Science 290(5500):2323–2326

    Article  Google Scholar 

  8. He X, Yan S, Hu Y et al (2005) Face recognition using laplacianfaces[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence 3:328–340

    Google Scholar 

  9. Qidi W, Yibing L, Yun L et al (2014) The nonlocal sparse reconstruction algorithm by similarity measurement with shearlet feature vector[J]. Math Probl Eng 586014

  10. Lin Y, Tao H, Tu Y, Liu T (2019) A node self-localization algorithm with a mobile anchor node in underwater acoustic sensor networks[J]. IEEE Access 7:43773–43780

    Article  Google Scholar 

  11. Sun J, Wang W, Zhang K, Zhang L, Lin Y, Han Q, da Q, Kou L (2019) A multi-focus image fusion algorithm in 5G communications[J]. Multimed Tools Appl 78(20):28537–28556

    Article  Google Scholar 

  12. Cai D, He X, Han J (2007) Spectral regression: a unified approach for sparse subspace learning[C]. Seventh IEEE International Conference on Data Mining (ICDM):73–82

  13. Li A, Wu Z, Lu H, Chen D, Sun G (2018) Collaborative self-regression method with nonlinear feature based on multi-task learning for image classification[J]. IEEE Access 6:43513–43525

    Article  Google Scholar 

  14. Li A, Chen D, Wu Z, Sun G, Lin K (2018) Self-supervised sparse coding scheme for image classification based on low rank representation[J]. PLoS One 13(6):e0199141

    Article  Google Scholar 

  15. Jiao Y, Zhang Y, Chen X et al (2018) Sparse group representation model for motor imagery EEG classification[J]. IEEE Journal of Biomedical and Health Informatics 23(2):631–641

    Article  Google Scholar 

  16. Shao M, Kit D, Fu Y (2014) Generalized transfer subspace learning through low-rank constraint[J]. Int J Comput Vis 109(1–2):74–93

    Article  MathSciNet  Google Scholar 

  17. Liu S, Liu G, Zhou H (2019) A robust parallel object tracking method for illumination variations[J]. Mobile Networks and Applications 24(1):5–17

    Article  Google Scholar 

  18. Peng C, Kang Z, Cheng Q (2017) Subspace clustering via variance regularized ridge regression[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR):21–26

  19. Kang Z, Peng C, Cheng Q (2017) Kernel-driven similarity learning[J]. Neurocomputing 267:210–219

    Article  Google Scholar 

  20. Dou Z, Si G, Lin Y, Wang M (2019) An adaptive resource allocation model with anti-jamming in IoT network[J]. IEEE Access 7:93250–93258

    Article  Google Scholar 

  21. Wu Y, Shen B, Ling H (2012) Online robust image alignment via iterative convex optimization[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR):1808–1814

  22. Deng J, Trigeorgis G, Zhou Y, Zafeiriou S (2019) Joint multi-view face alignment in the wild[J]. IEEE Trans Image Process 28(7):3636–3648

    Article  MathSciNet  Google Scholar 

  23. Mobahi H, Zhou Z, Yang AY et al (2011) Holistic 3d reconstruction of urban structures from low-rank textures[C]. IEEE International Conference on Computer Vision Workshops (ICCV Workshops):593–600

  24. Chen H, Huang J, Remil O, Xie H, Qin J, Guo Y, Wei M, Wang J (2019) Structure-guided shape-preserving mesh texture smoothing via joint low-rank matrix recovery[J]. Comput Aided Des 115:122–134

    Article  Google Scholar 

  25. Wang Y, Wu L, Lin X, Gao J (2018) Multiview spectral clustering via structured low-rank matrix factorization[J]. IEEE Transactions on Neural Networks and Learning Systems 29(10):4833–4843

    Article  Google Scholar 

  26. Zhang Y, Shi D, Gao J et al (2017) Low-rank-sparse subspace representation for robust regression[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR):7445–7454

  27. Zhu X, Zhang S, Li Y et al (2018) Low-rank sparse subspace for spectral clustering[J]. IEEE Trans Knowl Data Eng 31(8):1532–1543

    Article  Google Scholar 

  28. Ding Z, Fu Y (2016) Robust multi-view subspace learning through dual low-rank decompositions[C]. Thirtieth AAAI Conference on Artificial Intelligence (AAAI)

  29. Li A, Liu X, Wang Y, Chen D, Lin K, Sun G, Jiang H (2019) Subspace structural constraint-based discriminative feature learning via nonnegative low rank representation[J]. PLoS One 14(5):e0215450

    Article  Google Scholar 

  30. Wong WK, Lai Z, Wen J, Fang X, Lu Y (2017) Low-rank embedding for robust image feature extraction[J]. IEEE Trans Image Process 26(6):2905–2917

    Article  MathSciNet  Google Scholar 

  31. Cai D, He X, Han J (2007) Semi-supervised discriminant analysis[C]. IEEE International Conference on Computer Vision (ICCV) 4408856

  32. Nie F, Xu D, Tsang IWH et al (2010) Flexible manifold embedding: a framework for semi-supervised and unsupervised dimension reduction[J]. IEEE Trans Image Process 19(7):1921–1932

    Article  MathSciNet  Google Scholar 

  33. Chen X, Yuan G, Nie F et al (2017) Semi-supervised feature selection via rescaled linear regression[C]. International Joint Conference on Artificial Intelligence (IJCAI):1525–1531

  34. Xu J, Tang B, He H, Man H (2016) Semisupervised feature selection based on relevance and redundancy criteria[J]. IEEE Transactions on Neural Networks and Learning Systems 28(9):1974–1984

    Article  MathSciNet  Google Scholar 

  35. Lin Z, Chen M, Ma Y (2010) The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices[J]. arXiv preprint arXiv:1009.5055

  36. Azran A (2007) The rendezvous algorithm: multiclass semi-supervised learning with markov random walks[C]. International Conference on Machine Learning (ICML):49–56

  37. Szummer M, Jaakkola T (2002) Partially labeled classification with Markov random walks[C]. Advances in Neural Information Processing Systems (NIPS). 945–952

  38. Belkin M, Niyogi P, Sindhwani V (2006) Manifold regularization: a geometric framework for learning from labeled and unlabeled examples[J]. J Mach Learn Res 7(Nov):2399–2434

    MathSciNet  MATH  Google Scholar 

  39. Sindhwani V, Niyogi P, Belkin M (2005) Beyond the point cloud: from transductive to semi-supervised learning[C]. International Conference on Machine Learning (ICML):824–831

  40. Zhou D, Bousquet O, Lal TN et al (2004) Learning with local and global consistency[C]. Advances in Neural Information Processing Systems (NIPS):321–328

  41. Zhu X, Ghahramani Z, Lafferty JD (2003) Semi-supervised learning using gaussian fields and harmonic functions[C]. International Conference on Machine Learning (ICML):912–919

  42. Wen J, Fang X, Cui J et al (2018) Robust sparse linear discriminant analysis[J]. IEEE Transactions on Circuits and Systems for Video Technology 29(2):390–403

    Article  Google Scholar 

  43. Li CN, Shao YH, Yin W et al (2019) Robust and sparse linear discriminant analysis via an alternating direction method of multipliers[J]. IEEE Transactions on Neural Networks and Learning Systems

  44. Wang F, Wang Q, Nie F, Li Z, Yu W, Wang R (2019) Unsupervised linear discriminant analysis for jointly clustering and subspace learning[J]. IEEE Trans Knowl Data Eng

  45. Wen Z, Yin W (2013) A feasible method for optimization with orthogonality constraints[J]. Math Program 142(1–2):397–434

    Article  MathSciNet  Google Scholar 

  46. Candès EJ, Li X, Ma Y et al (2011) Robust principal component analysis?[J]. J ACM 58(3):11

    Article  MathSciNet  Google Scholar 

  47. Yang J, Zhang Y (2011) Alternating direction algorithms for \ell_1-problems in compressive sensing[J]. SIAM J Sci Comput 33(1):250–278

    Article  MathSciNet  Google Scholar 

  48. Yang J, Yin W, Zhang Y, Wang Y (2009) A fast algorithm for edge-preserving variational multichannel image restoration[J]. SIAM Journal on Imaging Sciences 2(2):569–592

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The paper was supported in part by National Natural Science Foundation of China(Grant 61501147), University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province(Grant UNPYSCT-2018203), Natural Science Foundation of Heilongjiang Province(Grant YQ2019F011) and Fundamental Research Foundation for University of Heilongjiang Province(Grant LGYC2018JQ013), and Postdoctoral Foundation of Heilongjiang Province under Grant (LBH-Q19112).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qidi Wu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, A., An, R., Chen, D. et al. Semi-Supervised Subspace Learning for Pattern Classification via Robust Low Rank Constraint. Mobile Netw Appl 25, 2258–2269 (2020). https://doi.org/10.1007/s11036-020-01607-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11036-020-01607-2

Keywords

Navigation