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Abstract Video derain is an important issue in the field of digital image pro-
cessing and computer vision. This paper divides rain streaks into two types:
one is rain in natural scenes, and the other is rain in stochastic scenes. In
this paper, we propose a novel rotational video derain algorithm via noncon-
vex and nonsmooth algorithm (RoDerain). Not only can the rain streaks in
natural scene be removed, but the rain streaks in stochastic scene can be also
well removed. This paper added the rotation operator based on the discrim-
inatively intrinsic priors of rain streaks and clean videos to remove the rain
streaks in both natural and stochastic scenes.For the low rank problem of
the background, we replace the solution of the nuclear norm with improved
IRNN-Capped L1 suitable for tensor. Finally,this paper used the Alternating
Direction Method of Multipliers (ADMM) to optimize the solution of the pro-
posed rain streaks removal algorithm model.The disadvantage is that global
information is not considered. And the extensive experiment results show that
our proposed algorithm performs favorably in comparison to several popular
rain removal algorithms.
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1 Introduction

With the advancement of computer technology, the outdoor vision system is
widely used in target recognition [9] and tracking [5], traffic monitoring [29],
remote sensing monitoring [22] and military reconnaissance [28], etc. Outdoor
vision systems are often affected by various weather conditions, especially rain,
snow, fog and haze. These bad weather conditions will lead to serious degra-
dation of the image or video captured by the outdoor vision system, which
brings difficulty in subsequent video processing tasks. Therefore, processing
these degraded images and videos is of great significance.

The rain removal method began to emerge from time-domain filtering
method proposed by Starik et al. [19] in 2003. Although it started late, the
rain technology has become a hot spot for scholars at home and abroad in
recent years. There have been many methods of rain streaks removal based
on sparse domains. We mainly introduce the rain streaks removal algorithms
from two aspects of matrix and tensor.

For the matrix-based method. Kim et al. [11] used the time-spatial continu-
ity, and combined the support vector machine (SVM) [3] and low-rank matrix
completion [20] [2] [18] to reach the rain streaks. And this kind of method is
time-consuming. Manu et al. [1] effectively uses the L0 gradient minimization
approach to remove the rain pixels. Li et al. [25] proposed an effective method
that uses simple patch-based priors for both the background and rain layers.
These priors are based on Gaussian mixture models and can accommodate
multiple orientations and scales of the rain streaks. Zhu et al. [17] presented a
method for removing rain streaks from a single input image by decomposing
it into a rain-free background layer and a rain-streak layer.

For the tensor-based method. Chen et al. [24] proposed the rain removal
model of low-rank from matrix to tensor structure for the detection of time-
space interrelated rain streaks. ALAA [7] considered that rain-free scenes are
low rank for adjacent frames, so it can remove rain by extracting low rank
components between adjacent frames. This kind of method has weak constraint
and may have false detection of rain streaks. Jiang et al. [21] proposed a novel
tensor based video rain streaks removal approach by fully considering the
discriminatively intrinsic characteristics of rain streaks and clean videos.

Removing rain streaks from video has important practical implications. For
example, for a safe driving assistance system in an intelligent transportation
application, the removal of rain streaks in the video can improve the visibility
of the rainy day, which enable the driver to drive more comfortably and clearly,
and reduce the incidence of traffic accidents.

In recent years, deep learning-based methods are very popular. Zeng et
al. [27]proposed a lightweight channel spatial attention network for real-time
image de-raining. YU et al. [26]proposed a progressive network for single-
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image rain removal. By removing rain bars of various densities, proportions
and shapes, the image details of the rain-free area are well preserved.

However, there are still limitations existing in current rain removal meth-
ods. Most existing rain streaks removal algorithms are effective for the rain
in natural scenes, but it is different to remove the rain streaks in ’stochastic’
scenes. The difference between natural scenes and stochastic scenes is whether
rain streaks trajectory is perpendicular to the horizontal direction. The tra-
ditional preprocessing step is that the image will be rotated manually, but it
is intractable for stochastic scenes because of the complexity of algorithm and
unpredictable parameter of rotational angle. This paper adds the rotation op-
erator to the existing rain streaks removal model based on the discriminative
characteristics of rain streaks and the clean video in the gradient domain to
solve the rain streaks in both natural and stochastic scenes.

The low-rank minimization problem is NP-hard. Most current algorithms
use nuclear norm regularization to solve this low-rank problem. For example,
Jiang et.al [21] considered the low-rank problem of tensor as a convex optimiza-
tion problem, and used nuclear norm of tensor to solve. This paper considered
the low-rank minimization problem of clean video as a non-convex non-smooth
sparse minimization problem, and generalized the Iteratively Reweighted Nu-
clear Norm (IRNN) of the matrix to the tensor, and combined the nuclear
norm of tensor with Capped L1. This allows detailed processing of background
information and improve the quality of the restored image.

This paper used the Alternating Direction Method of Multipliers (ADMM)
to optimize the solution of the proposed rain streaks removal algorithm model.
Based on the idea of divide and conquer, ADMM divides a large overall prob-
lem into multiple local sub-problems, which reduces the scale of the problem.
It is especially suitable for machine learning problems.

Based the above aspects, we propose an adaptive low-rank tensor comple-
tion derain algorithm. The specific algorithm will be explained in detail in the
following sections.

The paper is organized as follows. In Section 2, we introduce the basic
tensor notations, which made a good preparation for the following. Section
3 mainly introduces the construction of the Adaption low-rank tensor com-
pletion for derain Algorithm. The whole detailed optimization processing of
the proposed rain streaks algorithm is presented in Section 4. In Section 5,
real-world experimental results, simulated experimental results and discussion
are presented. Finally, Section 6 is the conclusion of this paper.

2 Tensor notations

The existing knowledge of vector and matrix space has been unable to deal
with the problem of video, which has prompted people to learn and use tensor-
related knowledge for in-depth research, which has attracted extensive atten-
tion from experts and scholars at home and abroad.
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In general, we use lowercase letters to represent vectors, uppercase letters
to represent matrices, and swashes to represent tensors. For example, x is a vec-
tor, X is a matrix, X is a tensor. The scalar can be represented by a zero-order
tensor, the vector can be represented by a first-order tensor, and the matrix
can be represented by a second-order tensor. The tensor can be interpreted
as a high-order generalization of vectors and matrices (orders greater than
or equal to three), which can better represent high-order data with complex
structures. An N -order tensor A can be defined as A ∈ RI1×I2×···×IN , and
its (i1, i2, · · · , iN )-th element is ai1i2···iN . The following is a brief introduction
to the basic operation of tensor.

Definition 1: (The inner product of tensor) Two N -order tensors A and B
have the same size ( A,B ∈ RI1×I2×···×IN ), then their inner product can be
defined as:

< A,B >=
∑

i1,i2,··· ,iN

ai1i2···iN · bi1i2···iN (1)

Definition 2: (The Frobenius norm of tensor) N -order tensor A’s Frobenius
norm is the square root of all its elements:

‖A‖F =
√
< A,A > =

 I1∑
i1=1

I2∑
i2=1

· · ·
IN∑
in=1

|ai1i2···in |
2
1/2

(2)

The L1 norm of tensor: N -order tensor A’s L1 norm is the sum of all
non-zero elements.

The L0 norm of tensor: N -order tensor A’s L0 norm is the number of all
non-zero elements.

In this paper, the order of the tensor is three. For example, is third-order
tensor. Taking the third-order tensor A ∈ RI×J×K as an example, it has three
kinds of slices. There are horizontal slice Ai::, lateral slice A:j:, and frontal
slice A::k. The mode- unfolding of third-order tensor is the frontal slice A::k,
the horizontal slice Ai::, and the lateral slice A:j: is devised according to the
horizontal direction respectively.

3 The prerequisites of video image derain

The observation model [15] [14] [23] of rainy video can be formulated as :

O = B +R (3)

where O, B and R represent the rainy video, the unknown rain-free video and
rain streaks, respectively. They are all three tensors of size m× n× t.

Clean rain-free video B and the rain R can be recovered from rainy video
O, which is an ill-posed problem. Thus, this requires us to solve this inverse
problem through prior knowledge. There are three important prior knowledge.
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3.1 Rain Streaks Removal Model Based on Tensor

In 2017, Jiang et al. [21] utilized Discriminatively Intrinsic Priors to removal
the rain streaks. Firstly, Rain streaks are sparse and smooth along the direction
of raindrop. And then, the clean videos possess smoothness along the rain-
perpendicular direction and global and local correlation along time direction.
At last, the clean rain-free videos have the characteristic of low-rank because
of the little change of background. Thus, they proposed the rain removal model
via Discriminatively Intrinsic Priors:

min
R

α1‖∇yR‖1 + α2‖R‖1 + ‖O −R‖∗
+ α3‖∇x(O −R)‖1 + α4‖∇t(O −R)‖1

(4)

where ∇y and ∇x are difference operators along vertical and horizontal direc-
tions, respectively, and ∇t indicates the time directional difference operator.
‖.‖∗ indicates the nuclear norm.

Fig. 1 shows some of the statistics characteristics of rain streaks and rain-
free video. Firstly, the first row shows the rainy frame, clean frame and rain
streaks respectively. And then, (a-1,2,3) are the histograms of the rainy frame,
clean frame and the rain streaks respectively. (b-1,2,3) are the histograms of
from the rainy frame, clean frame and the rain streaks. We can observe that
(a-3) has the most zero values among (a-1,2,3), and (b-3) has the most zero
values among (b-1,2,3), thus the raindrops are sparse and the raindrops are also
sparse along the direction of the drop. And then, (c-1,2,3) are the histograms
of difference along the horizontal direction from the rainy frame, clean frame
and the rain streaks respectively. We can see that many burrs appear in (c-1)
and (c-3), while (c-2) is relatively piecewise smooth. The clean frame is smooth
along the horizontal direction. And so on, the clean video is smooth along the
horizontal direction. At last, (d-1,2,3) are the intensity value curve of a fixed
pixel of every frame from the rainy video, clean video and rain streaks. And
we find that (d-2) has the smoothest change.

3.2 Iteratively Reweighted Nuclear Norm

To solve the matrix problem of low rank, which is NP-hard, the measure of
nuclear norm may not get the perfect solution. Thus, Lu et al. [4] proposed
a non-convex non-smooth low-rank minimization method called Iteratively
Reweighted Nuclear Norm (IRNN) to solve this kind of problem about matrix.

minλ rank(X) +
1

2
‖X − Y ‖2F (5)

where X and Y is the matrix of size of m×n , λ > 0 , 0 ≤ ω1 ≤ ω2 ≤ · · · ≤ ωs
and s = min(m,n).
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Rainy frame Clean frame Rain Streaks

a-1 a-2 a-3

b-1 b-2 b-3

c-1 c-2 c-3

d-1 d-2 d-3
Fig. 1 (a-1,2,3) are the histograms of the rainy frame, clean frame and the rain streaks
respectively; (b-1,2,3) are the histograms of difference along the vertical direction from the
rainy frame, clean frame and the rain streaks respectively; (c-1,2,3) are the histograms of
difference along the horizontal direction from the rainy frame, clean frame and the rain
streaks respectively; (d-1,2,3) are the intensity value curve of a fixed pixel of every frame
from the rainy video, clean video and rain streaks.

The solution of Eq.(5) weights the singular values of the matrix, the Eq.(5)
can be transformed as:

minλ

s∑
i=1

ωiσi(X) +
1

2
‖X − Y ‖2F (6)

where σi(X) is the i-th singular value of X. Thus, X can be solved by:

X∗ = USλω(Σ)V T (7)

where Y = UΣV T is the singular value of Y , and Sλω(Σ) = Diag {(Σii − λωi)}.
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4 Rotational video derain via nonconvex and nonsmooth
optimization

4.1 The motivation of the proposed model

4.1.1 The Structural Element of Rotation Operator

Affected by various external influences, the trajectory of rain streaks is not al-
ways perpendicular to the ground. There is a certain inclination angle between
the trajectory of rain streaks and ground. In this paper, we refer to this kind
of rain streaks as the rain streaks in stochastic scenes. And at the same time,
we refer to the rain streaks whose trajectory is perpendicular to the horizon-
tal direction as the rain streaks in natural scenes. However, for the removal
processing of the rain streaks in stochastic scenes, many rain streaks removal
algorithms need to rotate every frame of the rainy video. If the length of the
video is very long, that is, the number of frames of the video is very large,
it can be very cumbersome. So this paper added the rotation operator Aθ to

Fig. 4’s the first item and fourth item. Aθ =

[
cos θ − sin θ
sin θ cos θ

]
and ATθ = A−θ .

The first item of the original model changed from α1‖∇yR‖1 to α1‖∇y(AθR)‖0
, and The fourth item of the original model changed from α3‖∇x(O −R)‖1
to α3‖∇x(Aθ(O −R))‖0 . The combination of the rotation operator and the
L0 norm can better correct and remove rain streaks in stochastic scenes. Sub-
sequent experiment results can also better confirm the effectiveness of the
rotation operator.

4.1.2 IRNN - Capped L1

In this paper, to solve the low rank problem of tensor, we extend IRNN from
solving matrix problem to tensor problem. And the Eq.(3) can be transformed
as:

min λ
1

3

3∑
n=1

3∑
i=1

ωiσi(X(n)) +
1

2
‖X − Y‖2F (8)

where X(n) = Unfoldn(X ), X ,Y ∈ Rm×n×t. It is more suitable for our algo-
rithm model. λ is a weight. In this paper, the order of the tensor is three.

Let Pi = Unfoldi(Y) ( i = 1, 2, 3), suppose the singular value decomposition
of Pi is Pi = UΣV T , and Qi = USλω(Σ)V T , thus the optimal solution X is :

X ∗ =

3∑
i=1

1

3
Foldi(Qi) (9)

where Sλω(Σ) = Diag {(Σii − λωi)}, Foldi(Qi) is to fold Qi to a tensor with
the same size of X . The value of ωi is selected by the super-gradient of Capped
L1 [4] as shown in Fig.2.
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4.2 The proposed Derain Model

In this paper, we add the rotation operator based on the discriminatively in-
trinsic priors of rain streaks and clean videos to remove the rain streaks in both
natural and stochastic scenes. For the low rank problem of the background, we
replace the solution of the nuclear norm with improved IRNN-Capped L1 suit-
able for tensor. Based on the above, the final proposed rain streaks algorithm
model via adaptive low-rank tensor completion in this paper is:

min
R

α1‖∇y(AθR)‖0 + α2‖R‖1 + α3‖∇x(Aθ(O −R))‖0
+ α4‖∇t(O −R)‖1 + ‖O −R‖Capped L1

(10)

4.3 Alternating direction multipliers optimization

In this section, it mainly introduces the mainly optimization processing of our
algorithm model.

To the first, we need to introduce five auxiliary tensors Y , S , X , T and L ,
and form such the constraints of ∇y(AθR) = Y , R = S, ∇x(Aθ(O−R)) = Y,
∇t(O−R) = T and O−R = L to solve the proposed optimization problem by
Alternating Direction Method of Multipliers (ADMM) [8]. So, our algorithm
model is transformed as:

min
R,Y,S,X ,T ,L

α1‖Y‖0 + α2‖S‖1 + α3‖X‖0 + α4‖T ‖1 + ‖L‖Capped L1

s.t. ∇y(AθR) = Y, R = S, ∇x(Aθ(O −R)) = X ,
∇t(O −R) = T , O −R = L

(11)

where Y,S,X , T and L ∈ Rm×n×t. Thus, the augmented Lagrangian function
is:

L (R,Y,S, T ,L, Λ) = α1‖Y‖0 + α2‖S‖1 + α3‖X‖0 + α4‖T ‖1 + ‖L‖Capped L1

+ 〈Λ1,∇y (AθR)− Y〉+
β1
2
‖∇y (AθR)− Y‖22

+ 〈Λ2,R− S〉+
β2
2
‖R − S‖22

+ 〈Λ3,∇x(Aθ(O −R))−X〉+
β3
2
‖∇x(Aθ(O −R))−X‖22

+ 〈Λ4,∇t(O −R)− T 〉+
β4
2
‖∇t(O −R)− T ‖22

+ 〈Λ5, (O −R)− L〉+
β5
2
‖O −R− L‖22

(12)
where Λ = [Λ1, Λ2, · · · , Λ5] is the Multipliers of the augmented Lagrangian
function and β = [β1, β2, · · · , β5] are five positive parameters.

The solution of the algorithm model is transformed from a constrained
problem to an unconstrained one.
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Fig. 2 Capped L1 Penalty

– The sub-problems of S, T :

The first step is to solve the L1 norm problem in the algorithm model
about S , T . The sub-problem of S is

min
S

α2‖S‖1 +
β2
2

∥∥∥∥S − (R+
Λ2

β2
)

∥∥∥∥2
F

(13)

It has a close-form solution by soft thresholding [6] as follows:

Sk+1 = Shrinkα2
β2

(Rk +
Λk

2

β2
) (14)

At the same time, the T -related sub-problem also belong to the problem of
L1 norm, and has the similar solution as follows:

T k+1 = arg min
T

α4‖T ‖1 +
β4
2

∥∥∥∥T − (∇t(O −R) +
Λ4

β4
)

∥∥∥∥2
F

=Shrinkα4
β4

(∇t(O −Rk) +
Λk4
β4

)

(15)

– The sub-problems of X , Y:

Subsequently, the sub-problems of X and Y are both about the solution with
L0 norm. In [13], these problems can be solved by regularizing the sparsity
property. Thus, the sub-problems of X and Y can be update respectively by:

Yk+1 = arg min
Y

β1‖Y‖0 +

∥∥∥∥Y − (∇y(AθR) +
Λ1

β1
)

∥∥∥∥F
2

=

{
∇y(AθRk) +

Λk1
β1
,
∣∣∣∇y(AθRk) +

Λk1
β1

∣∣∣2 ≥ β1
0 , otherwise

(16)

X k = arg min
X

β3‖X‖0 +

∥∥∥∥X − (∇x(Aθ(O −Rk)) +
Λ3

β3
)

∥∥∥∥F
2

=

{
∇x(Aθ(O −Rk)) +

Λk3
β3
,
∣∣∣∇x(Aθ(O −Rk)) +

Λk3
β3

∣∣∣2 ≥ β3
0, otherwise

(17)

– The sub-problems of L:
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The sub-problems of L can be solved by

arg min
L

‖L‖Capped L1 +
β5
2

∥∥∥∥O −R−L+
Λ5

β5

∥∥∥∥2
F

(18)

It is an important innovation of this paper. According the subsection named
Iteratively Reweighted Nuclear Norm-Capped L1 of Tensor of Section V, we
can get the solution of L is:

Lk+1 =

3∑
i=1

1

3
Foldi(Q

k
i ) (19)

where Pi = Unfoldi(O −R− Λ3

β3
) = UΣV T and Qi = USλω(Σ)V T .

– The sub-problems of R:

It is a least squares problems as follows:

min
R

β1
2

∥∥∥∥∇y(AθR)− Y +
Λ1

β1

∥∥∥∥2
F

+
β2
2

∥∥∥∥R− S +
Λ2

β2

∥∥∥∥2
F

+
β3
2

∥∥∥∥∇x(Aθ(O −R))− T +
Λ3

β3

∥∥∥∥2
F

+
β4
2

∥∥∥∥∇t(O −R)−X +
Λ4

β4

∥∥∥∥2
F

+
β5
2

∥∥∥∥O −R−L+
Λ5

β5

∥∥∥∥2
F

(20)

Because of the difference operators and rotation operator in the formula-
tions, we use fast Fourier transform(FFT) and its inverse fast Fourier transform
(IFFT) to solve the problem, which can speed up the solution of the problem.
So, R can be updated by:

Rk+1 = F−1
(

F(K1)

F(K2)

)
(21)

where F , F−1 denote the fast Fourier transform (FFT) and its inverse respec-
tively, and

K1 =∇Ty A−θ(β1Yk − Λk1) +∇TxA−θ(β3∇xAθO− β3Tk) + β5(O− Lk)

+ Λk5 +∇Tt (β4∇tO− β4Xk + Λk4)− Λk2 + β2Sk

K2 =β1∇Ty∇y + (β2 + β5)I + β3∇Tx∇x + β4∇Tt ∇t

Finally, these multipliers of ADMM can be updated parallel as follows:

Λk+1
1 = Λk1 + β1(∇y(AθRk)− Yk)

Λk+1
2 = Λk2 + β2(Rk − Sk)

Λk+1
3 = Λk3 + β3(∇x(Aθ(O −Rk))− T k)

Λk+1
4 = Λk4 + β4(∇t(O −Rk)−X k)

Λk+1
5 = Λk5 + β5(O −Rk − Lk)

(22)
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Algorithm 1 RoDerain
Input: The rainy video O, θ
While not converge do

step1: Update S, T respectively by Eq.(13)-Eq.(15);
step2: Update Y,X respectively by Eq.(16)-Eq.(17);
step3: Update L by Eq.(19);
step4: Update R by Eq.(21);
step5: Update the multipliers by Eq.(22);

end while
Output: The estimation of rain-free video B = O −R and rain streaks R.

In summary, the algorithm of ADMM decomposes a large global problem
for solving the rain streaks R into several smaller, easier-to-solve, local sub-
problems of Y, S, X , T and L, and then get the the solution of the global
problem by coordinating the sub-problems. It can speed up the whole process
of the algorithm. And the video derain algorithm flow as shown in the following
algorithm.

5 Rain streaks removal experiments

To verify our algorithm’s performance, we selected four methods to compare
with ours. There are the method using L0 gradient minimization technique
[1](denoted as 16’L0), the method using layer priors [25](denoted as 16’LP),
the method via utilizing discriminatively intrinsic priors [21](denoted as RSR)
and the method via joint bi-layer optimization [12](denoted as FastDeRain).
At the same time, one of the important characteristics of the rainy video we
chose is that the rain in the video is not perpendicular to the ground, but with
a certain angle to the ground.

5.1 Real-world Experiments

We select four kinds of rainy video to verify our algorithm better than other
four methods. These rainy videos are Pedestrian, Wall, Car and Yard respec-
tively. In addition, the Pedestrian video has the size of 240× 360× 3× 10, the
Yard video has the size of 640×380×3×30, the Car video and the Wall video
have the same size of 360× 640× 3× 10. In these four kinds of rainy video, we
choose one frame from these four videos respectively and randomly to show
the derain effect in visual. In addition, because of the lack of the ground truth
of the real-world rainy data, we can not directly calculate the index values be-
tween the ground truth and the derain images. In this part, we use the visual
effects as the only evaluation.

As shown is Fig.3, there are the whole rain removal results of four kinds
of real-world data. Firstly, the first, second, third, and fifth rows in the figure
are the results of the complete selected frames of the four real-world data
respectively. The fourth row corresponds to a partial enlarged view of the
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(a) (b) (c) (d) (e) (f)

Fig. 3 The derain result of rainy video. (a) the rainy data, (b) the result of 16’L0, (c)
the result of 16’LP, (d) the result of RSR, (e) the result of FastDeRain, (f) the result of
RoDerain.

third row, and the sixth row corresponds to a partial enlarged view of the fifth
row. And then, the first column Fig.3(a) is the rainy data, and the second
column Fig.3(b) to the sixth column Fig.3(f) are the rain removal results of
16’L0, 16’LP, RSR, FastDeRain and ADLRTC respectively. In these images
of rain removal results, the 16’L0 method sharpened the rainy video, but have
no rain removal effect. At the same time, the 16’LP and RSR methods also
have litter rain removal effect. The FastDeRain method smoothed the rainy
frames, and didn’t completely remove the rain streaks. However, our proposed
algorithm maintains consistently strong rain removal capability, and the rain
removal results are the best among other four methods.

5.2 Simulated Experiments

In simulated experiments, we also select four kinds of rainy video to verify
our algorithm better than other five methods. These rainy videos are City,
Mountain, Night and Opera House respectively. In addition, the City video
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has the size of 462 × 762 × 3 × 3, the Mountain video has the size of 462 ×
762 × 3 × 3, the Night video and the Opera House video have the same size
of 691 × 1200 × 3 × 3. In these four kinds of rainy video, we choose 1 frame
from these four videos respectively and randomly to show the derain effect
in visual.In the simulated experiments, we used the peak signal-to-noise ratio
(PSNR) [10], structural similarity index measurement (SSIM) [10], and feature
similarity index measurement (FSIM) [16] to verify the effectiveness of the
proposed algorithm as a quantitative assessment. We compute the mean value
of the three kinds of evaluation indices mentioned above for each frame of
rainy videos to compare with different methods, called MPSNR, MSSIM and
MFSIM.

In order to better show our rain removal effect, we select a partial enlarge-
ment from the complete frames to show our results as shown in Fig.4. So these
four rows are the rain results of the four kinds of simulated data. Similarly, the
first column Fig.4(a) is the local magnification in selected rainy frame of the
simulation data. And the second column Fig.4(b) to the sixth column Fig.4(f)
are the rain removal results of 16’L0, 16’LP, RSR, FastDeRain and RoDerain
respectively. Unlike real data, there is the ground truth in simulated data as
shown is Fig.4(g). With the contrast of the ground truth, we can see our rain
removal algorithm’s advantages better.

(a) (b) (c) (d) (e) (f) (g)

Fig. 4 The derain results of rainy video. (a) local enlargement of the rainy frame, (b) the
result of 16’L0, (c) the result of 16’LP, (d) the result of RSR, (e) the result of FastDeRain,
(f) the result of RoDerain, (g) the ground truth.

Table 1 is the quantitative evaluation of the different rain removal algo-
rithms of the four simulated rainy videos. In the data of City, Night, Opera
House, our proposed algorithm almost got the highest index values of MP-
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Table 1 Quantitative evaluation of the different derain algorithms of four rainy videos

Video Index
Methods

16’L0 16’CVPR RSR FastDeRain Proposed

City
MPSNR 25.2352 20.4635 34.6130 31.9802 35.8856
MSSIM 0.9301 0.9247 0.9532 0.9869 0.9742
MFSIM 0.9154 0.9251 0.9594 0.9642 0.9787

Mountain
MPSNR 23.4567 26.1298 30.3163 29.8564 29.7824
MSSIM 0.7819 0.8705 0.9603 0.9683 0.9745
MFSIM 0.8463 0.9226 0.9820 0.9849 0.9892

Night
MPSNR 24.0162 16.6175 23.4928 26.0321 30.4106
MSSIM 0.8421 0.7112 0.8675 0.8806 0.9687
MFSIM 0.9296 0.8615 0.9329 0.9788 0.9890

Opera House
MPSNR 26.5367 27.2913 32.1703 29.3660 35.7828
MSSIM 0.9007 0.9375 0.9666 0.9721 0.9888
MFSIM 0.9224 0.9533 0.9785 0.9611 0.9938

SNR, MSSIM and MFSIM. At the same time, the visual rain removal results
are better than other four methods. Although, in the data of Mountain, the
RSR method’s the value of MPSNR is slightly higher than ours. However,
combining with the visual effects in Fig.4, our proposed algorithm reached the
best rain removal results.

6 Conclusion

We propose a novel rotational video derain algorithm via nonconvex and non-
smooth algorithm. We introduce the rotation operator, and the constraint of
L1-norm, L0-norm and generalize non-convex non-smooth low-rank minimiza-
tion to propose a novel algorithm for rain streaks removal by decomposed
the rain-free video and the rain streak from the known rainy video. Extensive
experiments prove that our model achieved excellent rain removal effects. In
particular, our algorithm can remove the rain with a certain inclination angle
to the ground. This shows that the rotation operator plays its role well. At the
same time, the non-convex and non-smooth adaptive low-rank constraint can
improve the quantitative evaluation of the restored video images to a certain
extent. In a word, our algorithm is more advanced than existed other rain
removal algorithms.
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10. Alain HorÃ and D.Ziou. Image quality metrics: Psnr vs. ssim. 2010 International
Conference on Pattern Recognition. IEEE Computer Society, 2010.

11. J.H.Kim, J.Y.Sim, and C.S.Kim. Video deraining and desnowing using temporal cor-
relation and low-rank matrix completion. IEEE Transactions on Image Processing,
24(9):2658–2670, 2015.

12. T. Jiang, T. Huang, X. Zhao, L. Deng, and Y. Wang. Fastderain: A novel video rain
streak removal method using directional gradient priors. IEEE Transactions on Image
Processing, 28(4):2089–2102, 2019.

13. J.Pan and Z.Su. Fast l (0) -regularized kernel estimation for robust motion deblurring.
Western medicine; the medical journal of the west, 8(2):55, 1967.

14. L.W. Kang, C.W. Lin, and Y.H. Fu. Automatic singleimage-based rain streaks removal
via image decomposition. IEEE Transactions on Image Processing, 21(4):1742–1755,
2012.

15. Y. Li, R. T. Tan, X. Guo, J. Lu, and M. S. Brown. Rain streak removal using layer priors.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 2736–2744, 2016.

16. L.Zhang, L.Zhang, and X.Mou. Fsim: A feature similarity index for image quality
assessment. IEEE Transactions on Image Processing, 20(8):2378, 2011.

17. L.Zhu, C.W.Fu, and D.Lischinski. Joint bi-layer optimization for single-image rain
streak removal. 2017 IEEE International Conference on Computer Vision (ICCV).
IEEE Computer Society, 2017.

18. N.Srebro and T.Jaakkola. Weighted low-rank approximations. In Proceedings of 10th
International Conference on Machine Learning. Washington:American Association for
Artificial Intelligence, page 2003, 2003.

19. S.Starik and M.Werman. Simulation of rain in videos. Texture Workshop. Nice,
France:IEEE Press, 2:406–409, 2003.

20. T.Okatant, T.Yoshida, and K.Deguchi. Efficient algorithm for low-rank matrix factor-
ization with missing components and performance comparison of latest algorithms. In
Proceedings of IEEE International Conference on Computer Vision. New York: IEEE
Press, pages 842–849, 2011.

21. T.X.Jiang, T.Z.Huang, and X.L.Zhao. A novel tensor-based video rain streaks removal
approach via utilizing discriminatively intrinsic priors. 30th IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR, 2017), 2017.

22. X.Cao. Dynamic remote sensing monitoring of land use in nanjing based on tm images.
Geomatics and Information Science of Wuhan University, 31(11):958–961, 2006.



16 Lizhen Deng1 et al.

23. Y.L.Chen and C.T.Hsu. A generalized low-rank appearance model for spatio-temporally
correlated rain streaks. In Proceedings of the IEEE International Conference on Com-
puter Vision, pages 1968–1976, 2013.

24. Y.L.Chen and C.T.Hsu. Proceedings of ieee international conference on computer vision.
new york: Ieee press. Geomatics and Information Science of Wuhan University, pages
1968–1975, 2013.

25. Y.Li, R.T.Tan, and X.Guo. Rain streak removal using layer priors. Computer Vision
and Pattern Recognition. IEEE, 2016.

26. Weijiang Yu, Zhe Huang, Wayne Zhang, Litong Feng, and Nong Xiao. Gradual network
for single image de-raining. In Proceedings of the 27th ACM International Conference
on Multimedia, page 1795–1804, 2019.

27. Yirui Zeng and Ma Zhengming. A lightweight channel-spatial attention network for
real-time image de-raining. In Proceedings of the 2019 2nd International Conference
on Digital Medicine and Image Processing, page 43–48. Association for Computing
Machinery, 2019.

28. Z.Wang, Q.Kang, and Y.Xun. Military reconnaissance application of high-resolution op-
tical satellite remote sensing. In International Symposium on Optoelectronic Technology
& Application: Optical Remote Sensing Technology & Applications, 2014.

29. Z.Zhu, G.Xu, B.Yang, D.Shi, and X.Lin. Visatram: a real-time vision system for auto-
matic traffic monitoring. Image and Vision Computing, 18(10):781–794, 2000.


