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ABSTRACT

Multiwavelets are new addition to the body of 
wavelet theory. There are many types of symmetric 
multiwavelets such as Geronimo-Hardin-Massopust  
(GHM) and Chui-Lian (CL) multiwavelets. However, 
the matrix filter generating the GHM system 
multiwavelets does not satisfy the symmetric 
property. For this reason, this paper presents a new 
method to construct the symmetric orthogonal matrix 
filter, which leads to the symmetric orthogonal 
multiwavelets (SOM). Moreover, we analyze the 
prefilter technique, corresponding to the symmetric 
orthogonal matrix filter, to get a good combining 
frequency response. To prove the good property of 
SOM in image compression application, we 
compared the compression effect with other writers’ 
work, which was in published literature.  
Key words: Image compression, Multiwavelets, 
Prefilter technique. 

 1. INTRODUCTION 

Multiwavelets have several advantages in 
comparison with scalar wavelets. The features such 
as compact support, orthogonality, symmetry, and 
high order vanish moments are known to be 
important in signal processing. A scalar wavelet can 
not possess all these properties at the same time but 
multiwavelets can. 
The study of multiwavelets was initiated by 
Goodman, Lee and Tang in [1]. Then Goodman and 
Lee in [2] discovered the characterization of scaling 
functions wavelets. In [3], Jia constructed a class of 
continuous orthogonal double wavelets with 
symmetry, short support, and orthogonality. The 
special case of [3] with multiplicity 2 and support [0, 
2], was studied by Chui and Lian [4]. In [5], Hong 
and Wu constructed a class of multiwavelets with 
multiplicity 4 and support [0, 2]. Generally, after the 
presentation of prefilter technique, multiwavelets 
with multiplicity 2 can be applied in image 
compression application successfully [6][7][8]. 

The matrix filter generating the GHM, is not 
symmetric. So GHM can not solve the edge problem 
accurately in image coding unless the matrix filter 
used to do transform is symmetric. Though the 
matrix filter generating CL is symmetric, the 
construction of matrix filter is lack of universality. 
So we present a general method to construct a 
lowpass matrix filter at first. For scalar wavelets, the 
highpass filter is determined by an automatic way 
from the lowpass filter but it often fails here. The 
reason is that the lowpass fliter are matrices and they 
can not commute [9]. A new construction procedure 
is needed for multiwavelets. So we give some simple 
formulas to construct the highpass filter. For the 
complexity of construction the lowpass and highpass 
fiters, we focus only on the orthogonality but omit 
the good frequency response. So a prefilter technique 
should be presented to get a good combining 
frequency property of matrix filter together with 
prefilter. 
In order to evaluate the performance of 
multiwavelets for image coding at low bit rate, 
efficient SPIHT coding of multiwavelet coefficients 
has been realized, accomplished with a suitable 
scanning strategy across scales and inside each detail 
subband. 
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The multiwavelets is given 

by 
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3. PREFILTER TECHNIQUE 

For the complexity of designing the matrix filter̆we 
only consider the orthogonality but omit the good 
frequency property at first. By Eq.(13), we find 

)(wSOMH

)(

 has a better frequency response than 

wGHMH  and )(wCLH , and so is )(wSOMG . 

But as a whole, )(wSOMG  is not a good highpass 

filter for  is not a 0 matrix. The decomposition 
result shown in Fig. 1(b) is not suitable for image 
compression. So we should present a prefilter 
technique to get good lowpass and higpass frequency 
properties. For GHM and CL, there are many 
researches having been done [12]-[14]. As illustrated 
in Fig.1(c), using the prefilter technique, we can get a 
good energy distribution after decomposition. A 
framework of decomposition and reconstruction 
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combined with SOM and the corresponding prefilter 
is shown in Fig. 2. 
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(a) Original   (b) Decomposition without prefilter (c) Decomposition with prefilter 

Fig. 1.  Prefiltering can compact the energy in lowerpass subband 
 f(n) f(n)

 
 
 

 

              (a) Prefilter and decomposition                       (b) Reconstruction and postfilter 

Fig. 2. A framework of decomposition combining with SOM and prefilter.

 
(a)                                       (b) 

Fig. 3. Combining frequency response with Haar prefilter. (a) H0(÷). (b) G1(÷). 
 

We find  is steady for 

both CL and SOM. Moreover, the computation 

complexity is lower than the prefilter presented in 
[12] and [13] for the parameters of prefilter are 1/2 
and -1/2 (We call it Haar prefilter). There are four 
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combining frequency components as shown in 
Eq.(17) and Eq.(18). According to Eq.(17) and 
Eq.(18), the frequency responses of H0(÷ ) and 
G1(÷) are illustrated in Fig. 3.  

 )()()()()( wwwww 1100 AHAHH CCC +=   (17) 

)()()()()( wwwww 1100 AGAGG CCC +=    (18) 

4. SIMULATION RESULTS 

During a single level of decomposition using a scalar 
wavelets transform, a 2-D image data is replaced 
with four blocks corresponding to the subbands 
representing either lowpass or highpass filtering in 
each direction. The multiwavelets used here have 
two channels, so there will be two sets of scaling 
matrix coefficients and wavelets matrix coefficients. 
The first level multiwavelet decomposition subbands 

and the relationship are shown in Fig.4(a) and (b). 
Scalar wavelets transforms give a single 
quarter-sized lowpass subband from the original 
larger one. In previous literature, multiwavelet 
decompositions are performed in the same way. The 
multiwavelet decompositions iterate on the lowpass 
coefficients from the previous decomposition, the 
LiLj subbands in Fig.4(a), as shown in Fig.4(c). In 
the case of scalar wavelets, the lowpass quarter 
image is a single subband. However, when the 
multiwavelet transform is used, the lowpass 
coefficients is actually a 2¦2 block of subbands, one 
lowpass and three bandpasses. Conventionally, the 
next decomposition step will decompose the lowpass 
subbands L={L1L1, L1L2, L2L1, L2L2}. In this case, 
2-level multiwavelet decomposition of a 2-D signal 
will produce 4(3¦2+1) subbands.

 
 

L1L1 L1L2 L1H1 L1H2  
 

L2L1 L2L2 L2H1 L2H2  
 

H1L1 H1H1 H1L2 H1H2  
 

H2L1 H2L2 H2H1 H2H2  
 

(b)(a)  

 
 
 
 
 
 
 
 
 

(d) (c)   
Fig. 4. (a) 4 subbands after first decomposition. (b) Parent-children relationship among the 4 subbands. (c) 28 subbands after 

second decomposition. (d) The traditional scan and quantization order among the 28 subbands. 

 

The quantization method used to generate the result 
in this paper is the SPIHT [15]. SPIHT and other 
type of zero tree quantizers, such as SLCCA [16] and 
MRWD [17], achieve good performance by 
exploiting the spatial dependency of the pixels, 

which are in different subbands after scalar wavelet 
transform. The assumptions that the SPIHT quantizer 
makes about the relationship between subbands hold 
well for scalar wavelet, but they do not hold for 
multiwavelets for the multiwavelet transform 
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destroys the parent-children relationship that SPIHT 
presumes as illustrated in Fig. 5(a). Then we present 
a new scan and quantization method that allows 
multiwavelet decompositions to receive most of the 
benefits from a SPIHT quantizer. The basic idea is to 

try to restore the spatial features that SPIHT requires 
for optimal performance. As a QMF-pyramid 
subband structure, the dependencies between 
ancestors and offsprings are show in Fig. 5(b).

 
 
 
 
 
 
 
 
 
 

A B AB
CDC D 

E F E F
GH 

G H 

 (a) (b) 
Fig. 5. Reorganizing the subband structure. (a) Before reorganization. (b) After reorganization, a scalar wavelet scan and quantization 

can be performed. 

 

The new symmetric orthogonal multiwavelets, 
prefilter, and scan order are evaluated on four natural 
512¦512 grayscale images, i.e., Lenna, Barbara, 
Boat, and Goodhill. For an accurate comparison, we 
have chosen a scalar wavelet for our experiment, an 
orthogonal and symmetric basis. Particularly, the 

following multiwavelets basis have been considered: 
GHM with the orthgonal approximation preserving 
prefilter, and CL with Haar transform matrix prefilter. 
Usually, the distortion is measured by peak signal to 
noise ratio.

                    Table I PSNR for compression of Lenna, Barbara, Boat, and Goodhill 
Image Filter 8:1 16:1 32:1 Image Filter 8:1 16:1 32:1 

 Bi9/7 35.84 31.67 27.37  Bi9/7 35.24 32.20 29.46 
Barbara GHM 36.07 31.64 27.97 Goodhill GHM 35.80 32.35 29.87 

 CL 36.36 31.71 28.08  CL - 33.12 30.58 
 SOM 36.430 32.209 28.33  SOM 36.43 33.211 30.473
 Bi9/7 - - -  Bi9/7 39.55 36.62 33.31 

Boats GHM 37.75 33.87 29.73 Lenna GHM 40.14 37.70 33.30 
 CL 37.71- 33.95 29.86  CL 40.46 37.13 34.278
 SOM 38.06 34.301 30.238  SOM 40.64 37.791 34.478

 
Table I shows the PSNR comparison on Lenna, Boat, 
Goldhill, and Barbara image at different bit rates. 
Our coder consistently outperforms Bi9/7. Compared 
to Bi9/7, our coder gains 0.15 dB to 0.25 dB in 
PSNR on average. Then we only compare the results 
that come from our coder with GHM. For Barbara 
image, our coder gains more than 0.5dB at 
compression ratio (CR) 16:1, and gains 0.3 dB at 
compression ratio 8:1. For boat image, our coder 
gains 0.25 dB at CR 8:1, 0.45 dB at CR 16:1, and 
only gains 0.4 dB at CR 32:1. However, For the 
Goodhill and Lenna, which are relatively smooth 
images, the performance between our coder and 

GHM gets closer. These preliminary results suggest 
that the SOM and prefilter for our coder is worthy of 
further investigation as a technique for complex 
textured image compression. 
It is also noteworthy that symmetric multiwavelets 
can achieve good compression performance even 
though it has lower approximation order than both 
GHM and CL. So we can draw a conclusion that the 
approximation order and regularity are very 
important for some applications such as digital signal 
processing applications, but in image compression, 
the effect of approximation order and regularity is 
still unknown. 
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5. CONCLUSIONS 

Multiwavelets are an important development of 
wavelet theory for it solved the conflict between 
orthogonality and linear phase. Multiwavelets offer 
the advantages of combining symmetry, 
orthogonality, and short support, properties not 
mutually achievable with scalar wavelet system. For 
the special frequency response of the matrix filter, 
we introduce a new prefilter technique. In order to 
evaluate the performance of multiwavelets for image 
coding at low bit rate, efficient SPIHT coding of 
multiwavelets coefficients has been realized, 
accomplished with a suitable scanning strategy 
across scales and inside each detail subbimage. 
Extensive experimental results demonstrate that the 
parent-children relationship is much natural between 
finer and coarser scales multiwavelets coefficients, 
and our techniques exhibit performance equal to, 
even in several cases superior to the conventional 
scan and quantization methods. 
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