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Abstract

Providing video on demand (VoD) service over the Internet in a scalable way is a challenging problem.

In this paper, we propose P2Cast—an architecture that uses a peer-to-peer approach to cooperatively stream

video using patching techniques, while only relying on unicast connections among peers. We address the

following two key technical issues in P2Cast: (1) constructing an application overlay appropriate for stream-

ing; and (2) providing continuous stream playback (without glitches) in the face of disruption from an early

departing client. Our simulation experiments show that P2Cast can serve many more clients than traditional

client-server unicast service, and that it generally out-performs multicast-based patching if clients can cache

more than ����� of a stream’s initial portion. We handle disruptions by delaying the start of playback and

applying the shifted forwarding technique. The threshold in P2Cast, i.e, the length of time during which

arriving clients form a single session, can serve as a “knob” to adjust the balance between the scalability and

the clients’ viewing quality.

I. INTRODUCTION

Providing video on demand (VoD) service over the Internet is a challenging problem. The

difficulty is twofold. First, it is not an easy task to stream video on an end-to-end basis because

of a video’s high bandwidth requirement and long duration. Second, scalability issues arise when

attempting to service a large number of clients. In particular, a popular video can attract a large

number of viewers that issue requests asynchronously. Traditional VoD service employs a client-

server unicast service model. Each client sets up its own connection with the server over a unicast

channel. As the video popularity increases, the server needs to serve a large number of clients
�
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and soon becomes the bottleneck. How to optimally provide VOD service in a scalable manner

remains an open question to be solved.

Several approaches have been explored in the past to tackle scalability issues faced by VoD

service. IP multicast has been proposed to enhance the efficiency of one-to-many and many-to-

many communication over the Internet. A series of IP Multicast-based schemes, such as Patching

[1, 2], Periodic Broadcast [3, 4], and Stream Merging [5], have been developed that can drastically

decrease the aggregate bandwidth requirement of the clients at the server by leveraging native IP

multicast. For instance, under Patching, clients arriving close in time form a session. The server

begins to multicast the entire stream at the client playback rate upon the arrival of the first client.

The following clients retrieve the stream from the multicast channel and obtain the missing initial

portion, denoted as the patch, from the server over a unicast channel. It has been shown that the

required server bandwidth grows as the square root of the request arrival rate [2]. Unfortunately,

IP multicast has not been widely deployed, making an IP multicast approach infeasible in practice.

Other approaches to addressing the scalability issue include proxy caching and the use of content

distribution networks (CDNs). Here the content is pushed from the server to proxies or CDN

servers close to the clients. By strategically placing a large number of servers around the Internet,

clients can choose the server that incurs the least amount of congestion. Although this method can

mitigate scalability concerns, it cannot resolve the issue entirely. For example, assume a proxy is

assigned to serve the clients from a region. If the number of requesting clients is very large, this

proxy can be overwhelmed.

Recently, peer-to-peer networks (P2P) have been used for file sharing, application-level multi-

cast, and more [6–10]. Peer nodes bring computation and storage resources into the system, thus

reducing the workload placed on the server and thereby increasing the overall scalability.

It is an intriguing technical question if these techniques can be integrated to tackle the scalability

issue faced by the VoD service. In this paper, we propose P2Cast - an architecture based on

a peer-to-peer approach to cooperatively stream video using the patching technique, while only

relying on unicast connections among peers. In P2Cast, clients arriving close in time (within a

threshold) form a session. For each session, the server, together with the P2Cast clients, form an

application-level multicast tree over the unicast-only network. The entire video is streamed over

the application-level multicast tree, so that it can be shared among clients. For clients who arrive
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later than the first client in the session and thus miss an initial segment of the video, the segment

can be retrieved from the server or other clients that have already cached that initial segment.

The clients in P2Cast are “active” in the sense that they can forward the video stream to other

clients, and also cache and serve the initial portions of a video to other clients. Every P2Cast client

actively contributes its bandwidth and storage space to the P2Cast system while taking advantage

of the resources located at other clients. We compare the performance of P2Cast with IP multicast-

based patching and the traditional unicast-based client-server approach. Simulation experiments

show that P2Cast can serve many more clients than traditional client-server unicast service, and

generally out-performs multicast-based patching if clients can cache more than ����� of stream’s

initial part in our experiments.

Although P2Cast is based on patching, it is not a simple extension. The following issues need to

be properly addressed before patching can be successfully applied.
� Constructing the application overlay appropriate for streaming. An application-level multicast

tree having sufficient bandwidth to transmit the stream must be constructed and maintained.

When a new client arrives, P2Cast needs to select a patch server that can serve the missing

initial part of the video.

� Providing continuous stream playback (without glitches) in the face of disruption from depart-

ing clients. When clients leave the application overlay, P2Cast needs to overcome disruptions

due to departures by restructuring the application overlay.

We develop the Best Fit (BF) algorithm to construct the application-level streaming delivery tree,

as well as select the patch server that will serve the missing part of the video to an arriving client.

We further investigate two variations of the BF algorithm, namely the BF-delay and the BF-delay-

approx algorithm.

We handle disruptions by (1) delaying the start of playback; and (2) applying the shifted for-

warding technique to the base stream. The threshold serves as a “knob” that can adjust the balance

between the scalability and the clients’ viewing quality in P2Cast.

In summary, the major contributions of this paper are as follows:
� We propose P2Cast, a technique for providing VoD service, that scales better than a unicast-

based client-server service approach and an IP multicast-based patching approach.

� We develop a series of overlay construction algorithms suitable for a video streaming service

such as P2cast.
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� We investigate techniques that provide continuous playback in the face of disruptions.

The remainder of the paper is organized as follows. In Section II we describe P2Cast. In Section

III we present the Best Fit algorithm along with two variations. Section IV is dedicated to perfor-

mance evaluation. Recovery from client departures and underlying network failures is investigated

in Section V. Section VI overviews related work. Our conclusions and future work are included in

Section VII.

II. P2CAST: PEER-TO-PEER PATCHING SCHEME

A. Overview of P2Cast

P2Cast is an architecture that uses a peer-to-peer approach to cooperatively stream video using

patching, while only relying on unicast connections among peers. The key idea of P2Cast is to

have each client act as a server while it receives the video. The non-scalability of traditional client-

server unicast VoD service lies in the fact that the server is the only “contributor” to serving a video,

and can thus become “swamped” by a large number of clients passively requesting the service. In

the client-server service model, a client sets up a direct connection with the server to receive the

video, and an amount of bandwidth equal to the playback rate is consumed along the route. As the

number of requests increases, the bandwidth at the server and in the network is increases as well,

and incoming requests must eventually be rejected.

In contrast, P2Cast clients not only receive the requested stream, but also contribute to the overall

VoD service by forwarding the stream to other clients and caching and serving the initial part of the

stream. Associated with P2Cast is a threshold, � . Clients that arrive within the threshold constitute

a session. Together with the server, clients belonging to the same session form an application-level

multicast tree, denoted as the base tree. The server streams the entire video over the base tree. We

denote this complete video stream as the base stream. When a new client joins the session, it joins

the base tree and begins receiving the ongoing base stream, which is being transmitted on the base

tree. Meanwhile, the new client must obtain a “patch” containing the initial part of the video from

the start of the session (when the video begins streaming on the base tree) to the time it joined the

base tree. As we will see, the newly joining client obtains the patch from the server or another

client. P2Cast clients behave like peers in a P2P network, and provide the following two functions:

� Base Stream Forwarding. P2Cast clients need to be able to forward the received base stream
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Fig. 1. A snapshot of P2Cast at time 40. Clients in a session form an application-level multicast tree together with

the server. All clients in session 3 have finished patch retrieval; while 3 clients in session 4 are still receiving the

patch stream from their parent patch servers.

to other clients so that clients and the server can form an application-level multicast tree over

which the base stream is transmitted.
� Patch Serving. P2Cast clients need to have sufficient storage to cache the initial part of the

video. A P2Cast client can then serve the patch to other clients.

We use an example to illustrate P2Cast. Fig. 1 illustrates a snapshot of P2Cast at time 40. It

shows two sessions, session 3 and session 4, starting at time 20.0 and 31.0, respectively, with the

threshold equal to 10. We use circles to represent clients with the client’s arrival time marked

beside the circle. A solid line with an arrow is used to represent the parent-child relationship in the

base tree; and a dashed line with an arrow is used to represent the patch server-client relationship.

The server and the clients in a session form an application-level multicast tree to deliver the base

stream. At time 40, all clients in session 3 have finished patch retrieval, while three clients in

session 4 are still in the process of receiving a patch stream. Note that clients belonging to different

sessions are independent of each other. In Section V we will use this observation to improve the

clients’ robustness against disruptions caused by other clients’ early departure.

We describe below a new client admission process, the base tree construction/joining process,

the patch server selection process, and the failure recovery process, in turn.
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B. New client admission

A new client first contacts the server. This allows the VoD service provider to keep track of

the clients who have requested the service. The disadvantage of this approach is that the server

becomes the single contact point. In practice, a VoD service provider can deploy multiple servers

and use mapping techniques to guide clients to different servers to achieve the load balancing.

Here we focus on the single server scenario.

As with the patching scheme proposed in the IP multicast setting [1, 2], all clients arriving within

the threshold form a session. A new client that cannot join the most recent session starts a new

session. The server streams the entire video to this client.

If the new client belongs to an already existing session, i.e., the difference between the first

client’s and the new client’s arrival time is smaller than the threshold, it tries to join this session’s

base tree. In addition, the new client tries to select a patch server in its session that can stream

the patch to it. If the new client successfully joins the base tree and selects a patch server, it is

admitted. Because of limited bandwidth at the server and in the network, if a new client is not able

to find a path with sufficient bandwidth to join the base tree, or to obtain the patch from a peer

client or the server, the client will be rejected.

P2Cast combines the patch server selection process with the base tree joining process in order

to help minimize a client’s joining delay. The detailed algorithm used in P2Cast is illustrated in

Section III.

C. Base tree construction

P2Cast employs the tree-first approach to construct the base tree. In general, there are two

basic approaches for constructing an application-level multicast tree: the mesh-first approach and

the tree-first approach. The mesh-first approach [6] builds up a mesh among the participating

nodes first. The mesh is usually optimized for an application requirement and is dynamically

adjusted to accommodate the underlying network change. For instance, if a new arrival or node

departure/failure occurs, the mesh is restructured to adapt to the change. A routing algorithm is run

at each node. In the tree-first approach [7, 8], the application-level multicast tree is created directly

(without construction of the underlying mesh). The arrival of new nodes or departure/failure of

existing nodes triggers the restructuring of the tree.
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One design goal of P2Cast is to make the client as simple as possible. The mesh-first approach

in [6] requires all participants to run a distributed algorithm to maintain the mesh, as well as a

routing algorithm to route the traffic to the right peer nodes. In contrast, the nodes in the tree-first

approach need only perform a simple data forwarding function. Moreover, in P2Cast, there are

frequent arrivals of new clients, which will keep disturbing the mesh construction and thus affect

the overall performance. Based on the above considerations, we choose the tree-first approach.

Below we list the design principles followed in the base tree construction in P2Cast.
� Bandwidth first principle. VoD service has a stringent bandwidth requirement but is relatively

insensitive to the delay. A “fat pipe” (i.e., a path with abundant unused bandwidth) is more

likely to offer good quality and be robust to transient network congestion. Therefore we prefer

to select a node with a fat pipe to the client.
� Local information only principle. Since the number of clients is large and dynamically varies

over time, we want to avoid requiring that a node has global information, such as the number

of clients in the tree, the structure of the tree, etc.. In the process of base tree construction,

only local information should be used. By local information, we mean the information about

this node itself, its parent node, and its child nodes.

For a new client, the base tree joining process starts with the server. Streaming media service

requires a minimum amount of available bandwidth from a parent node to a child node. The

server measures the available bandwidth from itself to the new client, and decides whether this

client can be its child node. If the server admits the new client, this client joins the base tree and

receives the base stream from the server. Otherwise, the server redirects the new client to one of its

existing child clients, denoted as candidate client. The candidate client makes its own decision as

to whether to admit this new client to be its child node. If not, the new client is further re-directed

to its child node. The process continues recursively until the client successfully joins the base tree,

or is rejected.

D. Patch server selection

A patch server serves the patch to a new client. Except for the first client in a session (who

receives the entire video (base stream) from the server), all other clients will miss the initial part

of the video and will require a patch. A new client needs to select a patch server from which it can

obtain a unicast patch.
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Since the server stores the entire video, it can always be a patch server as long as it has sufficient

bandwidth. A peer client that arrives earlier and has sufficient bandwidth can also be a patch server.

Fig. 2 illustrates an example. Assume that the session starts at time 0. At time ��� , client 1 arrives. It

joins the base tree and receives the base stream starting at point ��� . We assume that client 1 obtains

the patch stream from the server directly. At time ��� , client 2 arrives. Client 2 joins the base tree

and receives the base stream from the base tree. Since client 1 has already cached part of the patch

required by client 2 at time ��� (the shaded part is the content already cached in client 1); and client

1 continues to receive its own patch and base stream, it can serve as the patch server for client 2.

The patch server selection process for a new client is identical to a new client’s base tree joining

process. In fact, all existing clients in a session arrive earlier than the new client, and thus can

be its patch server if there is sufficient bandwidth. In Section V, however, we will consider patch

recovery, where the arrival time of a candidate patch server needs to be compared with the arrival

time of the requesting client.

0 t1 t2 Time

Base stream

Client 1 patch (from server)

base (from base tree)

Client 2 patch (from client 1)

base (from base tree)

Fig. 2. The earlier arriving client (client 1) is eligible to be the patch server for the later arriving client (client 2) in

P2Cast.

E. Failure Recovery

In P2Cast, the departure of a client or an underlying network failure, such as link or path failure

or available bandwidth fluctuation, can disrupt both the delivery of a patch stream, as well as the

transmission of the base stream over the application-level multicast tree. P2Cast provides two

forms of failure recovery: base stream recovery and patch recovery.

We consider base stream recovery first. Suppose client � is disrupted by a failure. Due to the tree

structure, all clients belonging to the subtree rooted at this client are affected by the failure. For

the sake of simplicity and to prevent the server from receiving a large number of recovery requests,
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P2Cast only allows client � to contact the server and perform recovery. The recovery process is

identical to that of a new client joining process except that here only the base stream is required. If

the recovery attempt succeeds, the entire subtree is recovered. If it fails, client � is rejected. The

children of client � will then contact the server and start the recovery process representing their

own subtrees. This process continues recursively.

In patch recovery, assume client � seeks a new patch server. � contacts the server and begins

the recursive recovery process identical to the server selection process for a new client. Note that

only the clients arriving earlier than client � can be candidate patch servers. If a patch server is

successfully selected, the recovery succeeds. Otherwise, client � is rejected, and the clients that

receive a patch or the base stream from client � will initiate the recovery processes.

We present the signaling protocol used in P2Cast for clients to do the failure recovery in [11]. It

consists of a network failure recovery protocol and a client departure recovery protocol, to deal with

network failure and client departure, respectively. P2Cast clients constantly monitor the incoming

traffic (both the base stream and patch stream) and when the incoming traffic’s quality degrades to

a certain degree, the recovery process is triggered.

In Section 4 we will further investigate how to provide continuous playback even in the face of

disruptions . Below we first present the Best Fit algorithm for base tree construction and patch

server selection.

III. BEST FIT ALGORITHM FOR BASE TREE CONSTRUCTION AND PATCH SERVER

SELECTION

In this section we first describe the Best Fit (BF) algorithm that constructs the base tree and

selects the patch server in P2Cast. We then present two variations of BF algorithm, BF-delay and

BF-delay-approx, both of which can also be used for base stream recovery and patch recovery.

A. Best-Fit (BF) Algorithm

In the Best Fit algorithm, the requesting client starts the recovery process by contacting the

server. The following procedure is followed by the requesting client.
� Step 1. The requesting client � contacts a candidate parent � , starting with the server.
� Step 2. � estimates the bandwidth from � to � , �������	��
 . Meanwhile, it sends messages

to all of its children in the base tree, denoted as �����
 , asking them to measure their respective
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bandwidth to the requesting client.
� Step 3. � collects the measured bandwidth from its children, and identifies the child node

������� that has the fattest pipe to � , i.e., �������
	 ����������������������� � ��� �	� 
 � . A tie is broken

arbitrarily. There are two possibilities, depending on the measurement reported back to � : (a)

Candidate node � has the fattest pipe to the requesting node � , � �����	� 
"! �����#����� �	� 
 ; and (b)

one of the children has the fattest pipe to � , � ��� � ��
�$ � ���#����� � ��
 . We discuss in turn each of

these scenarios.

(1) If �������	��
%! � ��������� � ��
 , � has the fattest pipe to � and is able to support at least one

stream. If � only requires the base stream, it can join the base tree using � as its parent node. If a

patch is required, and � arrives earlier than � , then � becomes � ’s patch server. If both the base

stream and a patch are required, the patch has the priority over the base stream. If � can serve

the patch, it will become � ’s patch server. If � has sufficient leftover bandwidth to serve the base

stream, � joins the base tree with � as parent node. If � cannot fully fulfill � ’s request, � is

re-directed to �"����� , and starts from the step 1 again.

(2) If � �����	��
&$ � ���"����� �	��
 , then � is re-directed to �"����� , and starts from step 1 above.

In step 3, if a client has out-degree constraint and cannot support any more clients, it can return

an available bandwidth of zero to its parent client without conducting bandwidth measurement. If

all candidate parents report zero bandwidth, the algorithm randomly selects one client to which �
is re-directed.

B. BF-delay and BF-delay-approx algorithms

Here we further introduce two variations of BF: BF-delay and BF-delay-approx. In BF-delay,

network delay information is used to break the tie at step 3, i.e., when multiple nodes have paths

with the same amount of bandwidth to incoming client � , the client closest to the requesting client

is selected.

BF-delay-approx uses a different bandwidth metric in steps 2 and 3. Instead of the actual avail-

able bandwidth ����� �	��
 , it uses ' ��� � ��
 , where ' ��� �	��
 is 1 if client � has enough bandwidth to

support the incoming client � ’s request, and 0 otherwise. The delay information is used to break

the tie. Since BF-delay-approx only needs to test whether a client can admit the incoming client

rather than measure the exact amount of available bandwidth (as requested by the BF and BF-delay

algorithms), the measurement overhead of BF-delay-approx is lower than that of BF and BF-delay.
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Hence the joining delay in BF-delay-approx is expected to be smaller.

IV. PERFORMANCE EVALUATION

In this section, we first evaluate the performance of P2Cast through simulation experiments.

We then compare three overlay construction algorithms: BF, BF-delay, and BF-delay-approx. In

our simulation results, the half-width of the 95% confidence interval of the data shown in this

paper is always less than 5% of the point estimate. The experiments show that (1) P2Cast is more

scalable than either a client-server unicast approach, or an IP multicast-based patching approach;

(2) a larger threshold helps to serve more clients in P2Cast; and (3) under the same conditions,

BF-delay and BF-delay-approx algorithm can serve more clients than BF and reduce the overall

network workload over BF. However, they present a higher workload to the server than BF.

We will address the failure recovery problem in the Section V. For now we assume that no client

departs early and that there are no network failures. We start with a description of the simulation

setting.

A. Simulation setting

We use a 3-level network topology in our simulation experiment. Fig. 3 illustrates the top two

levels generated by GT-ITM [12] with 100 nodes. We assume that each node is an abstraction of

a local network that can host an unlimited number of clients, and that there is sufficient bandwidth

within a local network to support media streaming. The network consists of one transit network

(consisting of 4 nodes) and 12 stub domains. Shortest path routing is used to determine the routing.

We assume that the video playback rate is constant bit rate (CBR). We assign a bandwidth to each

link in terms of the number of playback rates a link can support. The capacities of links between

transit nodes and between transit nodes and stub domain nodes are chosen to be larger than those

between stub domain nodes, since links in the network core are typically better provisioned and

have more bandwidth than edge links. Using advanced coding techniques, videos with playback

rates of 300Kbps to 500Kbps offer reasonably good viewing quality. A link with the capacity of

100Mbps can support 200 to 333 such streams. Since we simulate P2Cast providing service for

one video, we choose the capacity of each core link to be 20, i.e., core links can support up to 20

streams simultaneously; and that of each edge link to be 5 for the simulation results reported in

this paper. Furthermore, we change the location of the server from the transit network to the stub
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domain to study performance sensitivity to the server bandwidth change. We also vary the link

capacity, and similar results are observed in [11].

We simulate the on-demand service of one video to clients whose arrival process is Poisson.

Each client is equally likely to be placed at any node. It is possible for more than one client to

reside at the same node.

Fig. 3. Top 2-level network topology used in simulation

B. Notations and performance metrics

We denote by � , � , and � as the average rate of clients arrival process (Poisson), the length

of the video, and the threshold value, respectively. We define the normalized workload ( � ) to

be the product of the average client arrival rate and the video length, � 	���� , and the effective

normalized workload ( ��� 
 to be the admitted normalized workload, ���&	�� � �
	�� 
 . We use the

following performance metrics in our evaluation: (1) Rejection probability (� ) - the probability

that a client cannot be admitted and served; (2) Server stress (  ) - the average amount of bandwidth

used at the server; (3) Startup delay ( � ) - the time that clients must wait before actually receiving

the video and playing it back. In the following simulation we assume that the video length is 100

minutes.

C. Performance of P2Cast

In this section we present and discuss our simulation results.
� Client rejection probability. We first place the server in the transit domain (shaded node in

the center of Fig. 3). We assume that the threshold of P2Cast is 10% of the video length, and every
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Fig. 4. Performance comparison of P2Cast, unicast, and IP multicast-based patching

client has sufficient storage space to cache a patch. As for IP multicast-based patching, we use the

optimal threshold, which is � ��� � � � �
� ��� � 	 � 
	� � � �
� � � as derived in [2].

Fig. 4(a) depicts the rejection probability vs. the normalized workload for unicast, P2Cast using

BF algorithm, and IP multicast-based patching. We observe that P2Cast admits more clients than

unicast by a significant margin as the load increases. Also P2Cast outperforms the IP multicast-

based patching, especially when the workload is high. These results show that the peer-to-peer

paradigm employed in P2Cast helps to improve the scalability of P2Cast.
� Server stress. Fig. 4(b) shows the server stress for different schemes. The server is the

most stressed under unicast. The server stress for P2Cast is even lower than that of IP multicast-

based patching. Although application-level multicast is not as efficient as native IP multicast, the

P2P paradigm employed in P2Cast can effectively alleviate the workload placed at the server - in

P2Cast, clients take the responsibility off the server to serve a patch whenever possible.
� Threshold impact on the performance of P2Cast. In general the scalability of P2Cast im-

proves as the threshold increases. Fig. 5(a) depicts the rejection probability of the P2Cast scheme

with different thresholds. As the threshold increases, more clients can be admitted. Intuitively as

the threshold increases, more clients arrive during a session and thus more clients can share the

base stream. However, the requirement on the needed storage at each client also increases. We

also observe in our experiment that the rejection probability decreases faster when the threshold

is smaller than 20% of the video length, and flattens out afterwards. This suggests that we should
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Fig. 5. Threshold impact on the performance of P2Cast

carefully choose the threshold such that most benefits can be obtained without overburdening the

client.

In VoD service, the startup delay is another important metric. In the BF algorithm illustrated

in Section III, every step incurs certain delay. However we expect that the available bandwidth

measurement conducted at Step 2 is the most time consuming. Therefore the startup delay in

P2Cast heavily depends on the number of candidate clients that a new client must contact before

being admitted. We use the average number of candidate nodes a new client must contact before

being admitted as an estimate of the startup delay.

Fig. 5(b) depicts the average number of nodes contacted for different threshold values in P2Cast.

As either the normalized workload or the threshold value increases, the average number of nodes

that need to be contacted also increases. Therefore although a larger threshold in P2Cast allows

more clients to be served, it also leads to a larger joining delay.
� Effect of server bandwidth. We investigate the effect of server bandwidth on performance by

moving the server to one of the stub nodes in Fig. 3 (a shaded node in the stub domain). Here the

server has less bandwidth than when placed in the transit domain. Fig. 6(a) illustrates the client

rejection probability. Overall, the rejection probability of all three approaches with the server in

the stub domain is higher than that with the server in the transit domain (see Fig. 4(a)) due to the

decreased server bandwidth.

Fig. 6(b) depicts the rejection probability of the IP multicast-based patching with the optimal
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Fig. 6. Effect of server bandwidth on performance with server placed in stub domain

threshold and several fixed thresholds. Interestingly, we observe that IP multicast-based patching

with the optimal threshold performs badly when the normalized workload is high. The optimal

threshold is derived to minimize the workload placed on the server, with the assumption that the

server and the network have unlimited bandwidth to support the streaming service. As the client

arrival rate increases, the optimal threshold decreases. This leads to an increasing number of

sessions. Since one multicast channel is required for each session, with limited server bandwidth,

the server cannot support a large number of sessions while providing patching service. This leads

to the high rejection probability when the client arrival rate is high. Fig. 6(b) compares the IP

multicast-based patching using the optimal threshold with that using the fixed thresholds of 5, 10,

20, 30 percent of the video size. When the arrival rate is high, the fixed larger threshold actually

helps IP multicast patching to reduce the rejection rate. This suggests that “optimal threshold” may

not be optimal in a real network setting.

D. Comparison of overlay construction algorithms

In Fig. 7, we compare the rejection probability, network usage, and server stress for BF, BF-

delay, and BF-delay-approx, with the server placed in the transit domain. One observation is that

both the BF-delay and BF-delay-approx outperform BF algorithm in terms of rejection probability.

We also see that the performance of BF-delay and BF-delay-approx are close. Furthermore, we

note that the server stress of BF is much less than that of BF-delay and BF-delay-approx. BF
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Fig. 7. Comparison of the tree construction algorithms

encourages the requesting client to connect to a client with the most abundant bandwidth, even if

that client is farther away from the requesting client than other candidate clients. Since bandwidth

is consumed over more links, this potentially increases the rejection probability for future arrivals

and the overall network usage. Nevertheless, by pushing requesting clients to other clients, the

server is less stressed.

We also conducted experiments with the server in the stub domain, and similar results are ob-

served [11].

V. FAILURE RECOVERY - PROVIDING

CONTINUOUS PLAYBACK

In P2Cast, the departure of a client can disrupt both the delivery of a patch stream and the

transmission of the base stream over the base tree. The ability to provide continuous playback in

the face of these disruptions is essential to the success of P2Cast. In the following, we examine

this issue from the following two aspects: (1) the disruption effect on the continuous playback of

the patch stream; and (2) the disruption effect on continuous playback of the base stream. We find

that the patch stream is relatively immune to the disruption because of its short duration. For the

base stream, we proposed the shifted forwarding technique to conceal the disruption. Finally, the

threshold in P2Cast serves as a knob that can adjust the balance between the scalability and the

clients’ viewing quality.
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A. Disruption effect on the continuous playback of the patch

Let us consider the effect of a disruption on the patch first. In P2Cast, a client receives the patch

from its patch server and begins play back immediately. The departure of the patch server interrupts

this patch playback. However, the length of the patch is equal to the time difference of the clients’

arrival time and the session starting time, which is no larger than the threshold and presumably

much shorter than the video length. For instance, if the video length is 100 mins and the threshold

is 10 mins, the patch length averages 5 mins in length, given the arrival process is Poisson. The

short duration of the patch makes it relatively immune to disruption since the likelihood that the

disruption hits the patch is much smaller than that of the base stream.

Fig. 8 plots the probability of the number of candidate clients contacted (i.e., the candidate

patch servers contacted during the patch recovery, or the candidate base stream servers contacted

during the base stream recovery) before a client can successfully recover from the failures. The left

column of Fig. 8 is for the patch recovery; and the right column is for the base stream recovery.

Since a client can be disrupted more than once, we collect the accumulated number of candidate

clients contacted in recovery. The top two plots in Fig. 8 are for a threshold equal to 10% of the

video length; and the bottom two plots are for a threshold equal to 30% of the video length. We

assume that a client departs early with a probability of 0.1, and an early departing client is equally

likely to depart at any point during the playback.

Most clients (0.996 for threshold 10% and 0.983 for threshold 30) will not be disrupted at all

during the playback of a patch stream in our example. Patch delivery is disrupted only if the patch

server departs while serving the patch. Since the length of patch is usually short, the chance that a

patch gets disrupted is small.

Furthermore, the probability that a client has to contact more than 5 candidate clients during the

patch recovery is less than 0.0003 and 0.0019, respectively, for the threshold of 10% and 30%.

Thus if we can delay the playback for a short period and let the buffer build up a bit, say by

delaying the playback to the time to contact 5 clients, the continuous playback of the patch stream

can be provided with high probability.

B. Disruption effect on continuous playback of the base stream

The base stream is more prone to disruption because the entire subtree rooted at a departing

client is disrupted. As depicted in Fig. 8, for the same environment, the probability that a client’s
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Fig. 8. Probability of no. candidate clients contacted for recovery caused by client departure.

base stream will not be disrupted goes down to 0.885 and 0.856, respectively. The probability that

more than five clients need to be contacted increases to 0.0069 and 0.0205. However, note that the

base stream is played back after being buffered for the period equal to the sum of playback delay

and the patch length. We propose the shifted forwarding technique to protect the base stream from

the glitch by using this cushion.

Shifted forwarding is similar to interval caching proposed for efficient memory caching. We

give an example below to illustrate the idea. Suppose the session starts at time 0, and the client � ’s
parent node departs at time � . Client � re-joins the base tree at time � ��� . Thus client � and all its

descendant clients in the base tree miss the video from time � to � ��� . A glitch will be observed.

Using shifted forwarding, client � will send a message to its parent client, asking it to forward the

content starting at � (instead of forwarding the current data at � ��� ). Since the base stream has

a cushion equal to the sum of the playback delay and patch size, the glitch can be avoided if the

cushion is larger than � . Usually the cushion (sum of playback delay and patch size, on the order

of minutes) is much longer than the rejoining time (usually at the order of tens of seconds [13]),

uninterrupted playback of the base stream can be achieved with high probability.

C. Threshold adjustment - balancing the scalability and viewing quality

The threshold value can be used as a knob to adjust the balance between scalability and viewing

quality in P2Cast. As illustrated in Section IV, a larger threshold in P2Cast usually leads to the
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admission of more clients. However, a smaller threshold would help to provide better quality of

the played out video - it is more likely that clients get continuous playback without a glitch.

A smaller threshold makes the patch size smaller, thus the patch disruption is less likely. Fur-

thermore, a small threshold reduces the number of clients in a session. Hence the probability that

the clients’ base stream gets disrupted decreases. For instance, Fig. 9 depicts the probability that

the base stream encounters at least one disruption during the playback if the base tree is a balanced

binary tree. We assume that a node can leave with probability ��� , and a departure will affect all its

descendant nodes. We note that the curve is concave and the probability decreases as the number

of nodes decreases.

In the extreme, when the threshold is zero, the P2Cast reverts to the unicast service model, where

clients’ early departures do not affect each other and the continuous playback is guaranteed once

a client is admitted. Therefore the threshold in P2Cast gives the service provider a knob to adjust

the balance between the scalability and the clients’ viewing quality.
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Fig. 9. Probability that the base stream encounters at least one disruption during the playback (balanced binary tree).

We also examine the probability that a client is forced to stop in the middle of video playback

due to some other clients’ early departure. This happens when a client cannot successfully recover

from the disruption. For instance, a disrupted client cannot rejoin the base tree successfully. Fig.

10 depicts the probability of such forced early departure vs. clients’ departure probability, ��� ,
with the threshold equal to 10% of the video length and the arrival rate set to be 1 arrival/min.

Although this probability increases along ��� , overall the probability of forced early departure is

small. Intuitively, although early departures disrupt other clients, their used bandwidth is released.

Thus it is likely that disrupted clients can rejoin the base tree and find a new parent node.

Finally, we discuss how to use the threshold as a “knob” to balance the scalability with the
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Fig. 10. Probability of forced early departure due to disruption.

viewing quality. As shown by the experiments presented in Section IV, the number of clients that

can be serviced increases as the threshold increases. Meanwhile, the clients are more likely to

experience the disruption during the course of watching a video as the threshold increases (see Fig.

9). The video streaming service providers can consciously use the threshold as the “knob” to adjust

the balance between the scalability and the quality. In the following, we propose two techniques to

tune the threshold.

� Model-based threshold tuning. Here we assume that the service providers can obtain both the

scalability model and the viewing quality model. The scalability model reflects the relationship

between the scalability and the length of threshold; while the viewing quality model reflects

the relationship between the viewing quality and the length of threshold. For instance, the

Fig. 5 can serve as the scalability model, and the Fig. 9 can serve as the quality model.

Suppose that the desired client rejection probability is less than ����� ��� � , and that the desired

client disruption probability is less than ���	� ����
��� . By monitoring client arrival rate, the service

providers calculate the corresponding threshold ����� ��� � and ���	� ����
��� , respectively. The actual

threshold, � , must be larger than ����� ��� � while smaller than ���	� ����
��� . There exit following two

scenarios: (1) ����� ��� � $ ���	� ����
���� . In this case, any � � �
����� ��� � ���	� ����
������ would satisfy the

requirement. (2) ����� ��� � ! ���	� ����
���� . In this case, either scalability or view quality has to be

sacrificed. The service providers will make the final decision.

� Feedback-based threshold tuning. The effectiveness of the model-based technique largely de-

pends on the accuracy of the models. It is not a trivial task to obtain the accurate scalability

and quality models in practice. In feedback-based threshold selection, we assume that the

clients are willing and able to send quality-related feedbacks, such as the indication whether
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they have been disrupted during the playback so far, back to the original server. The service

providers monitor the feedbacks as well as the client arrival process, and periodically adjust

the threshold to achieve the desired scalability-quality balance. For instance, the threshold can

be adjusted using the following formula:

����� �&	
��� �� ��� 	 � � Want better viewing quality

��� � Balanced scalability-quality
��� � � � Want more scalability

(1)

The value of � should be chosen significantly smaller than that of the threshold so that delicate

scalability-quality balance can be achieved. The period at which the threshold is updated can

be adjusted in practice until the best results to the service providers are achieved.

VI. RELATED WORK

P2Cast is related to some previous works in the context of application level multicast systems,

peer-to-peer steaming services, and available bandwidth measurement techniques.

To overcome the lack of IP multicast, many application-level multicast systems have been pro-

posed recently, e.g., [6–9, 14–17]. Many of them use the delay as the single or primary metric in

the tree construction, attempting to minimize the average delay among peer nodes. ZIGZAG[17]

allows the media server to distribute content to many clients by organizing them into an appropriate

tree rooted at the server. To satisfy the high bandwidth requirement of applications like streaming,

the tree construction algorithms resort to limiting the out-degree of peer nodes. In contrast, P2Cast

uses the information of measured available bandwidth in the base tree construction. The available

bandwidth larger than the playback rate is guaranteed over the entire base tree.

Several peer-to-peer streaming systems have been developed [18–21]. Peercast [18] and Coop-

Net [19] exploit the cooperations from clients to distribute the content, thereby alleviating the load

on the server. They are mainly designed for live media streaming. CoopNet also supports VoD

service, and employs “distributed streaming” to obtain the content from multiple peers simulta-

neously. SplitStream [21] is a high-bandwidth content streaming/distribution system that is built

upon Pastry [22], a generic substrate for peer-to-peer applications. There are several efforts put

forth by industry, such as Allcast [23], vTrails [24], and Bluefalcon [25], that claim to provide live

streaming and on-demand service. However, we cannot do a specific comparison because of the

absence of published information on their on-demand services.
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Finally, estimating the available bandwidth efficiently is very important for the overlay construc-

tion algorithm in P2Cast since it determines clients’ joining delay and the likelihood of providing

continuous playback in the face of disruptions. Reference [13] claims that their tool needs less

than 15 seconds to produce an estimate of the available bandwidth. We expect the bandwidth mea-

surement in P2Cast takes less time since the granularity of bandwidth of interest in P2Cast is the

video playback rate. The measurement overhead can further be reduced if the BF-delay-approx

algorithm is used. Furthermore, since the available bandwidth measurement has little impact to

other traffic flows [13], we believe that the concurrent bandwidth measurement toward the same

requesting client will not affect the measurement accuracy significantly.

VII. DISCUSSION, CONCLUSIONS AND FUTURE WORK

In this paper, we have described and evaluated a new technique, P2Cast, to tackle the scalability

issue faced by VoD service over the Internet. P2Cast extends the IP multicast patching scheme to

a unicast-only network by exploring the idea of P2P networking. We addressed two key technical

issues in P2Cast, namely (1) constructing the application overlay appropriate for streaming; and

(2) providing continuous stream playback (without glitches) in the face of disruption from an early

departing client. Our simulations show that P2Cast scales much better than traditional client-server

unicast service, and generally out-performs multicast-based patching if clients can cache more than

��� � of stream’s initial part. Furthermore, we handle disruptions by delaying the start of playback

and applying the shifted forwarding technique to the base stream. The threshold in P2Cast serves

as a knob that can adjust the balance between the scalability and the clients’ viewing quality in

P2Cast.

Future research can proceed in several directions. First, we are developing the middleware im-

plementing P2Cast. How to design the system architecture of such a middleware, and how to

enhance the current available streaming protocol to support P2cast, are both challenging and in-

triguing research questions. Second, as in any peer-to-peer networks, clients can behave selfishly

by not contributing their resources and serving other peers. Furthermore, clients may be forced not

to fully participate in the peer-to-peer service because of the practical limitations. For instance, the

up-link bandwidth for end users that use ADSL or cable modem may not be large enough due to

connections’ asymmetric nature. Or the client behind the firewall may not be able to stream the

video to the outside clients. We are studying mechanisms to overcome these limitations, and to
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encourage clients to cooperate with each other. We hope that a form of fairness among peers can

be achieved in the future. Third, in this paper we point out that the threshold can serve as a knob to

adjust the balance between the scalability and the clients’ viewing quality in P2Cast. A technique

for selecting the threshold based on the video’s popularity and network conditions is worth further

study. Finally, current P2Cast has been designed for supporting CBR videos. Extending this work

to support VBR is also an interesting question for future research.
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