Skip to main content
Log in

A hybrid M-channel filter bank and DCT framework for H.264/AVC intra coding

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In H.264/AVC, discrete cosine transform (DCT) is performed on the residual blocks after prediction. However, the mismatch between variable block sizes and the fixed transform matrix not only degrades decorrelation performance but also causes severe blocky artifacts inside the blocks. In previous work, M-channel filter bank system (MCFBS) was proposed to overcome these defects. However, the increased percentage of encoding time by using MCFBS is very high, especially for intra coding. More seriously, the constructed M-channel filter bank with floating-point coefficients is an obstacle to hardware implementation. In this work, a hybrid M-channel Filter bank and DCT (HMD) framework is proposed for intra coding. Besides, the integer transform of a newly constructed M-channel filter bank is also implemented for HMD. Experimental results demonstrate that HMD can reduce 64–69% of the complexity of MCFBS with negligible quality degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Adaptive quantization encoding technique using an equal expected-value rule, JVT-N011.doc (2005) http://ftp3.itu.ch/av-arch/jvt-site/2005_01_HongKong, Hong Kong

  2. Cham WK (1989) Development of integer cosine transforms by the principles of dynamic symmetry. Proceedings of IEE 136(4):276–282

    Google Scholar 

  3. Chan SC, Luo Y, Ho KL (1998) M-channel compactly supported biorthogonal cosine-modulated wavelet bases. IEEE Trans Signal Proc 46(4):1142–1151

    Article  MathSciNet  Google Scholar 

  4. Chen J, Ouyang X, Zheng W, Xu J, Zhou J, Yu S (2006) The application of symmetric orthogonal multiwavelets and prefilter technique for image compression. Multimedia Tools Appl 29(2):175–189

    Article  Google Scholar 

  5. Chen J, Gao Y, Sun W, Xiang D (2008) Flexible prediction block decomposition with multi-channel filter banks for video coding. IET Image Proc 2(5):263–274

    Article  Google Scholar 

  6. Fan CP (2006) Fast 2-dimensional 4×4 forward integer transform implementation for H.264/AVC. IEEE Trans. Circuits and Systems II: Express Briefs 53(3):174–177

    Article  Google Scholar 

  7. Gregoire P, Beatrice PP (2005) Four-band linear-phase orthogonal spatial filter bank for subband video coding. Proceedings of the International Conference on Acoustics, Speech, and Signal Proc (ICASSP 2005), USA

  8. Hao P, Shi Q (2001) Matrix factorizations for reversible integer mapping. IEEE Trans. Signal Proc 49(10):2314–2324

    Article  MathSciNet  Google Scholar 

  9. Hao X, Xu J, Wu F (2007) Lifting-based directional DCT-like transform for image coding. IEEE Trans Circuits Syst Video Technol 17(10):1325–1335

    Article  Google Scholar 

  10. He Z, Bystrom M (2008) Improved conversion from DCT blocks to integer cosine transform blocks in H.264/AVC. IEEE Trans Circuits Syst Video Technol 18(6):851–857

    Article  Google Scholar 

  11. Lee YL, Han KH, Sim DG, Seo J (2006) Adaptive scanning for H.264 intra coding. ETRI Journal 28(5):668–671

    Article  Google Scholar 

  12. Li W (2001) Overview of fine granularity of scalability of MPEG-4 video standard. IEEE Trans Circuits Syst Video Technol 11(3):301–317

    Article  Google Scholar 

  13. Lin C, Zhang B, Zheng YF (2000) Packed integer wavelet transform constructed by lifting scheme. IEEE Trans Circuits Syst Video Technol 10(8):1496–1501

    Article  Google Scholar 

  14. Oraintara S, Chen YJ, Nguyen TQ (2002) Integer fast Fourier transform. IEEE Trans. Signal Proc 50(3):607–618

    Article  MathSciNet  Google Scholar 

  15. Pei SC, Ding JJ (2006) Improved reversible integer transform. Proceedings of the International Symposium on Circuits and Systems (ISCAS 2006), Greece

  16. Shui PL, Bao Z (2004) M-band biorthogonal interpolating wavelets via lifting scheme. IEEE Trans Signal Proc 52(9):2500–2512

    Article  MathSciNet  Google Scholar 

  17. Shui PL, Bao Z, Zhang XD (2001) M-band compactly supported orthogonal symmetric interpolating scaling functions. IEEE Trans Signal Proc 49(8):1704–1713

    Article  MathSciNet  Google Scholar 

  18. Steinbach E, Farber N, Girod B (1997) Standard compatible extension of H.263 for robust video transmission in mobile environments. IEEE Trans Syst Video Technol 7(6):872–881

    Article  Google Scholar 

  19. Suh KB, Park SM, Cho HJ (2005) An efficient hardware architecture of intra prediction and TQ/IQIT module for H.264 encoder. ETRI Journal 27(5):511–524

    Article  Google Scholar 

  20. Sullivan GJ, Topiwala P, Luthra A (2004) The H.264/AVC advanced video coding standard: overview and introduction to the fidelity range extensions. Conference on Applications of Digital Image Proc XXVII, SPIE 5558:454–474

    Google Scholar 

  21. Sullivan GJ, Topiwala P, Luthra A (2004) The H.264/AVC advanced video coding standard: overview and introduction to the fidelity range extensions. Proceedings of SPIE conference on Applications of Digital Image Proc XXVII, USA

  22. Sweldens W (1996) The lifting scheme: a construction of second generation wavelets. Applied Comput Harmon Anal 3(2):186–200

    Article  MATH  MathSciNet  Google Scholar 

  23. Trac DT, Ricardo LQ, Truong QN (2000) Linear-phase perfect reconstruction filter bank: Lattice structure, design, and application in image coding. IEEE Trans Signal Proc 48(1):133–147

    Article  Google Scholar 

  24. Tran TD (2000) The binDCT: fast multiplierless approximation of the DCT. IEEE Signal Proc Lett 7(6):141–144

    Article  MathSciNet  Google Scholar 

  25. Tsai AC, Wang JF, Lin WG, Yang JF (2007) A simple and robust direction detection algorithm for fast H.264 intra prediction. Proceedings of the 2007 International Conference On Multimedia & Expo (ICME 2007), China

  26. Tsai AC, Paul A, Wang JC, Wang JF (2008) Intensity gradient technique for efficient intra-prediction in H.264/AVC. IEEE Trans Circuits Syst Video Technol 18(5):694–698

    Article  Google Scholar 

  27. Vaidyanathan PP (1987) Theory and design of M-channel maximally decimated quadrature mirror filters with arbitrary M, having the perfect-reconstruction property. IEEE Trans Signal Proc 35(4):476–492

    MATH  Google Scholar 

  28. Wiegand T, Sullivan GJ, Bjontegaard G, Luthra A (2003) Overview of the H.264/AVC video coding standard. IEEE Trans Circuits Syst Video Technol 13(7):560–576

    Article  Google Scholar 

  29. Wiegand T, Schwarz H, Joch A, Kossentini SG (2003) Rate-constrained coder control and comparison of video coding standards. IEEE Trans Circuits Syst Video Technol 13(7):688–703

    Article  Google Scholar 

  30. Woong H, Kim J, Kyung CM (2007) A high-performance 2-D inverse transform architecture for the H.264/AVC Decoder. Proceedings of the International Symposium on Circuits and Syst (ISCAS 2007), USA

  31. Zhang C, Yu L, Lou J, Cham WK, Dong J (2008) The technique of prescaled integer transform: Concept, design and applications. IEEE Trans. Circuits Syst Video Technol 18(1):84–97

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengsheng Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, Y., Chen, J., Yu, S. et al. A hybrid M-channel filter bank and DCT framework for H.264/AVC intra coding. Multimed Tools Appl 47, 225–238 (2010). https://doi.org/10.1007/s11042-009-0320-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-009-0320-x

Keywords

Navigation