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Abstract This paper aims at generating an automated way to evaluate the team-
behavior of trainees in a delivery simulation course using video-processing tech-
niques with emphasis on multiple people tracking. The paper is composed of two
interacting, but clearly separated stages: moving people segmentation and multiple
people tracking. At people segmentation stage, the combination of the Gaussian
Mixture Model (GMM) and the Dynamic Markov Random Fields (DMRF) tech-
nique helps to extract the foreground pixels. For a better extraction of the human
silhouettes, the energy function of DMREF is extended with texture information. At
multiple people tracking stage, we concentrate on solving human-occlusion problem
caused by interacting persons based on silhouette data and a non-linear regression
model. Our model effectively transfers the person location problem during the
occlusion into the finding of the local maximum points on a smooth curve, so that
visual persons in the partial or complete occlusion can still be precisely captured. We
have compared our algorithm with two other popular tracking algorithms: mean-shift
and particle-filter. Experimental results reveal that the correctness of our method is
much higher than the mean-shift algorithm and slightly lower than a particle-filter,
however, with the major benefit of being a factor of 10-15 faster in computing.
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1 Introduction

During the last 10 to 15 years, simulation-based training has emerged as a strategy
that can be used to promote patient safety in maternity and newborn settings. After
being exposed to both low- and high- risk scenarios in the realistic setting, trainees
are better able to make nursing care decisions. Feedback from their instructors allows
them to learn from their mistakes and further develop their clinical reasoning skills,
ultimately leading to safer delivery of care. Performance assessment of trainees is
an important and essential step in entire simulation training procedure. Basically,
there are two types of performance assessment: on-line assessment and off-line
assessment. On-line assessment is that the instructor immediately gives remarks
once he finds mistakes, while off-line assessment is to provide feedbacks after ana-
lyzing the videotape of the training course. Currently, both assessments are con-
ducted manually, which is apparently low efficiency with the increasing number of
trainees and also training course. Consequently, it highly demands for an automatic
performance evaluation system for delivery simulation training. To this end, the
motion and activity of trainees need to be detected and analyzed.

Video analysis system has proved ability for human behavior analysis [15], and
such systems have been widely applied in healthcare domain during the recent
years. Koile et al. [14] uses a computer-vision system to monitor the location of a
person in a room in order to determine which activities are being completed, and
with which objects a user is interacting. In [21], a prototype system is designed to
monitor activities of elderly persons at home to assist the independent living. In
this system, authors construct an advanced silhouette extraction, human detection
and tracking algorithm for indoor environments and an adaptive learning method is
used to estimate the physical location and moving speed of a person from a single
camera view without calibration. Our previous work [11] also intends to monitor
the daily activity of elderly person, but focuses on detecting fall incidents. The
new idea proposed by this paper is to determine the fall event by analyzing the
changes of the main-axis of human. The work reported in [3] aims at detecting social
interactions of the elderly in a skilled nursing facility using audio/visual records,
because authors believe that changes in interaction patterns can reflect changes in
the mental or physical status of a patient. Although most of above systems are
dealing with human behavior analysis in healthcare domain, straightly mapping their
techniques to automatic evaluation of delivery simulation may not succeed due to
two problems. First, most of the above systems only need to track one or two people
in the scene. However, in our scenario it is required to track small groups of people
(up to 4 persons), and they are always moving together or interacting with each other.
In these cases, individual people are not visually isolated, but are partially or totally
occluded by other people. Second, the computational cost of most above systems is
far from satisfactory, so that they cannot be directly used in our application, where a
(near) real-time system is expected.

This paper proposes a real-time system to detect, track and analyze a group
of people, which is intended to be the basic system of an automatic performance
assessment of trainees in a delivery simulation course. Our system is original in three
aspects:

— Unlike the existing object-segmentation algorithms that only consider the spatial
and temporal information of the object, our Spatial-texture (StMRF) model
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seamlessly incorporates texture information as a pixel feature into the MRF
framework. Additionally, we design a dynamic texture detector to indicate the
edges caused by foreground objects, in which both contrasts of the original
image and background image are employed. With our method, the segmented
silhouettes of the human are more complete and accurate than the silhouettes
extracted by conventional algorithms, such as Spatial MRF (SMRF) model and
Spatial-Temporal MRF (STMRF) model.

— We propose an occlusion-handling approach, which models the horizontal
projection histograms of the human silhouettes, using a nonlinear regression
algorithm. Our model effectively changes the person locating during the oc-
clusion into the finding of the relative maximum points on a smooth curve
(function), so that visual persons in the partial or complete occlusion can still be
precisely captured. We also improve the template-matching algorithm used by
our previous work [8], where the key idea is that we adaptively assign different
weights to non-overlapped regions and overlapped regions when generating
the appearance-model for an object during the occlusion. This treatment will
improve the accuracy of template matching in object tracking, especially for the
occlusion case.

— A camera calibration algorithm is embedded into the system, thereby we can
compute the real speed of each person by considering the physical displacement
of him/her in two successive frames. This visual feature in the real-world domain
is invariant to the camera position. Different with the existing camera-calibration
technique applied in the human behavior analysis system that manually labels the
initial feature points, such as [2], our algorithm is robust and fully automatic.

2 Prior work in moving object segmentation and tracking
2.1 Moving object segmentation

Frame differencing [12] is a straightforward approach, which thresholds the differ-
ence between two frames, and large changes are considered to be the foreground.
Another approach is to build a representation of the background that is used to
compare against new images. Pixel-wise median filter [5] is a widely used background
modeling technique, where the background is defined to be the median at each pixel
location of all the frames in the buffer. Instead of using the median value of a group
of pixels, a more reasonable assumption is that the pixel value follows a Gaussian
distribution in the temporal direction, and a model is used to compute the likelihood
of background and foreground for a particular pixel. When single Gaussian is not
able to adequately account for the variance, a Mixture of Gaussians [22] is used
to improve the accuracy of the estimation. An alternative model is proposed by
Elgammal et al. [6], which estimates the probability of observing pixel intensity
values based on a sample of intensity values of each pixel. The model is supposed to
adapt quickly to changes in the scene, thereby enabling sensitive detection of moving
targets. A completely different idea, proposed by Oliver et al. [17], investigates
global statistics rather than the local one. Similar to eigenfaces, a eigenbackground
is created to capture the dominant variability of the background. In [1, 18], authors
employ an Markov Random Field (MRF) model to extract the moving object, in
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which the idea is to determine the segmentation mask as a Maximum A-Posteriori
(MAP) approximation. In this MRF model, both spacial and temporal coherency of
the object are considered, so that the state of a pixel is also affected by its neighbors.
Generally speaking, MRF model takes a good balance between complexity and
accuracy of the algorithm.

2.2 Moving object tracking

We can classify existing human tracking systems, according to their efficiency (real-
time or non-real-time) and their functionality (track single person, multiple persons,
handle occlusion). Pfinder [19] solves the problem of real-time tracking of people
in complex scenes in which there is a single unoccluded person and fixed camera.
The system called W* [9] is a real-time visual surveillance system for detecting and
tracking people and their body parts, and monitoring their activities in an outdoor
environment. However, this system has a limited capability to handle occlusions.
Mean-shift [4] is a real-time non-parametric technique that searches along density
gradients to find the peak of probability distributions. This approach is computa-
tionally effective, but it is susceptible to converge to a local maximum and the
occlusion remains problematic. The particle-filter technique [16] performs a random
search guided by a stochastic motion model to obtain an estimate of the posterior
distribution describing the object’s configuration. This method is robust in the sense
that it allows to handle clutters in the background, and it recovers from temporal loss
of tracking. Unfortunately, there are high computational demands in the approach,
and this is the bottleneck to apply it in real-time systems. In the layer tracking ap-
proaches, such as [20], shape, motion and appearance models of the different layers
corresponding to foreground objects and the background are estimated along with
the ordering of the layers. Foreground layers behind background layers are labeled
as occlusion. The drawback of these methods is the high computational cost and
maintaining the layer visibility. The work of [10] is highly related to our research, in
which a silhouettes-based occlusion-handling algorithm is proposed. Both the shape
of the silhouette boundary and the projection histograms of the silhouette are used
to locate the people during the occlusion. This method assumes that the complete
body silhouette of each person is detected and the size of the people in the picture
should be sufficiently large (at least 75 x 50 pixels). Unfortunately, such assumptions
do not always hold in real applications. Summarizing, none of the approaches solves
simultaneously the two primary problems mentioned at introduction section.

3 System overview

Figure 1 shows the flowchart of the proposed system, which consists of five compo-
nents.

1. Object segmentation. We perform an adaptive background subtraction [22] to
produce the initial masks for the moving persons. These masks are input to a
MRF-based segmentation algorithm that incorporates the spatial coherence for
robust foreground extraction. Here, the dynamic concept [13] helps to realize a
real-time algorithm.
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Fig. 1 Human detection, tracking and analysis system

2. Camera calibration. This component is to find the relationship between the
image coordinate system and world coordinate system. By doing so, the visual
features detected in the picture, such as positions of moving objects, can be
transferred to the real-world domain. These 3D visual features will significantly
facilitate to the semantic-level analysis due to its invariance to the location of
camera.

3. Occlusion detection. This component distinguishes the occlusion and the non-
occlusion cases, since we use different methods to treat these two cases. In our
method, if the distances in both x and y directions between several persons
are smaller than a predefined threshold in the current frame, we consider that
the occlusion may happen in the next frame. Otherwise, we keep the object
descriptions separated. Based on this scheme, we can even deduce the number
of persons involved in the occlusion.

4. Object tracking. The mean-shift algorithm [4] is explored to track moving
persons in the non-occlusion case, and our nonlinear regression algorithm is used
to deal with occlusion.

5. Trajectory generation. We base the trajectory generation on our previous work
[7], which adopts a Double Exponential Smoothing (DES) operator to model the
position of people collected from the tracking component. Using this method, we
can obtain more accurate and smooth moving trajectories.

In this paper, the emphasises are on our contributions: camera calibration, texture-
controlled object segmentation and human occlusion handling. More details about
other algorithms, e.g., adaptive background subtraction, mean-shift tracking and
DES-based trajectory generation, can be found in [4, 7, 22].

4 Camera calibration based on homography mapping

The task of the camera calibration is to provide a geometric transformation that
maps the points in the image domain to the real-world coordinates. In our system, we
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base the human-behavior analysis on the trajectory of person on the ground, so that
the height information of the human is not required. Since both the ground and the
displayed image are planar, the mapping between them is a homography, which can
be written as a 3 x 3 transformation matrix H, transforming a point p = (x, y, w) "
in image coordinates to the real-world coordinates p’ = (x', y’, w’)T with p = Hp/,
which is equivalent to

X hiy hiy hiz x
y | =1 ha hyn hos yl. (1)
w h31 hzn hs w’

The transformation matrix H can be calculated from four points whose positions
are both known in the real-world and in the image. In our previous work [7], we
have developed an automatic algorithm to establish the homography mapping for
analyzing the tennis video, where the court lines and their interaction points are
identified in the picture. Such lines and points are related to the lines and points
in a standard tennis court. By finding the correspondences, homography mapping
described in (1) can be established. In our current system, we still want to apply this
method, though there are no court lines on the ground. Our basic idea is to manually
put four white lines forming a rectangle on the ground, whose function is as same as
the court lines in the tennis game. We then measure the length of each line in the real
world, therefore generating a physical model in the real world domain. This setup is
accepted and will be adopted in the new training center of our hospital partner. The
complete system comprises three steps, whose basic ideas are described below:

1. White Pixel Detection. This step identifies the pixels that belong to white lines.
Since the lines that we put on the ground are usually white, this step is essentially
a white pixel detector. The mandatory feature of this step is that white pixels that
do not belong to white lines (white table, white wall) should not be marked.

2. Line Parameter Estimation. Initializing with the detected white pixels, line
parameters can be extracted using a RANSAC-based line detector, which hy-
pothesizes a line using two randomly selected points. If the hypothesis is verified,
all points along the line are removed and the algorithm is repeated to extract the
remaining dominant lines in the image.

3. Model Fitting. After a set of lines have been extracted from the image, we need
to know which line in the image corresponds to which line in the physical model.
It may also be the case that lines are detected other than those present in the
model or that some of the lines were not detected. This assignment is obtained
with a combinatorial optimization, in which different configurations of lines are
tired and evaluated. Finally, the configuration with the minimal cost is selected as
the best one. Once these correspondences are known, the homography between
real-world coordinates and the image coordinates can be computed (Fig. 2).

Our camera calibration is only executed in the first several frames, because the
camera in our scenario is supposed to be fixed. For more details concerning the
camera calibration algorithm, we refer to an earlier publication [7].
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Fig. 2 Illustration of camera calibration, which consists of white point detection, line detection,
model fitting and parameter computation

5 Texture-controlled object segmentation
5.1 Notation and basic model

Object segmentation can be treated by a Markovian-based Maximum A-Posterior
(MAP) approximation. Given the observation d and the configuration of labels f,
the posterior probability of fis

PEIHPH

P )

P(fld) =
Maximizing P( f|d) equals to maximizing the product of the class conditional proba-
bility P(d| f) and the priori probability P(f). Normally, we assume that P(d| f) and
P(f) take the form of a Gibbs distribution, then the MAP problem can be solved
by minimizing a Gibbs energy E(f|d). For moving object segmentation, only the
foreground label F and the background label B are considered. Energy E( f|d) is
composed of a node energy E, and a smoothness energy E; [1], such that

E(fld) = E,+ E;=Y_Vi(f.d)+ Y Vij(fd). 3)

(i, )eC;

The node energy is simply the sum of a set of per-pixel node costs V;(f, d), and the
smoothness energy E; is the sum of spatially varying horizontal and vertical nearest
neighbor smoothness costs. Here, C; is the clique of location i. A key issue in the
MRF model is the definition of the energy function. There are two definitions used
in the segmentation algorithm, each being briefly explained below.

@ Springer



920 Multimed Tools Appl (2011) 51:913-933

— Spatial MRF model (SMRF). SMRF only considers the spatial coherency of
the object, where the smoothness energy E; in (3) is developed in a spatial
network, which consists of nodes connected by edges that indicate conditional
dependency.

—  Spatial-Temporal MRF Model (STMRF). In [18], a temporal continuity term has
been added into the energy function, thereby allowing to maintain the coherency
of the segmentation through time. Basically, if a region has been classified as
foreground several times in the past, it is assumed to be classified as foreground
again in the current frame. According to our experiments, the gain of this model
is very limited in contrast to SMRF model, because the above assumption may
not keep valid in some situations, especially for nonrigid object, such as human
in our scenario.

5.2 Proposed texture-controlled MRF model

MRF-based algorithm achieves better object-segmentation performance by taking
the object coherency in both spatial and temporal dimensions into account, in
contrast to the methods that consider the pixels independently [7, 22]. In the
presently existing algorithms, color/intensity and the relation of the pixel locations
are important features for object representation, though they are insufficient to
represent all types of objects. For this reason, in many cases such approaches
fundamentally fail to precisely approximate the boundary of an object, as they
do not directly consider texture, which is one of the most important perceptual
attributes of any object. To address this problem, we propose a new MRF-based
object-segmentation algorithm that seamlessly incorporates texture information as a
pixel feature in the MRF framework. Our new system sequentially consists of four
stages, which are addressed below.

5.2.1 GMM-based initialization

In our system, an adaptive Gaussian Mixture Model (GMM) for background sub-
traction [22] is employed to produce the initial foreground masks. This algorithm
maintains a Gaussian-mixture probability function for each pixel separately, where
the parameters for each Gaussian distribution are updated in a recursive way. This
algorithm also involves a shadow-detection algorithm to remove shadow pixels.

5.2.2 Dynamic edge detection

Edge information is an indication of being an object boundary. Normally, there are
two kinds of edge: static edge and dynamic edge. The former refers to the edge in
the background part of the image, and the dynamic edge is caused by the moving
object. Apparently, we are only interested in edges that caused by the moving object,
so that dynamic edge is required to be detected. Since the background is known,
a straightforward idea is to subtract the edge in the background image from the
edge of the current image. However, the method based on this idea must accidently
remove some dynamic edge pixels that belong to the static edge as well. This situation
happens when the dynamic edge and static edge are overlapping somewhere due to
the moving of the object. To address this problem, we define a dynamic edge pixel
detector, which can attenuate the edge in the background while preserving the edge
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across foreground/background boundaries by considering the background model of
the image as a reference. This detector is formulated as:

1

Dtexture(i) = tex(i) - 15\
1+ texB (i) - exp (—7' b “”)

(4)

where i is the index of the pixel, and fex(i) is the texture value of the pixel i in
the current image by performing Sobel operator. Similarly, tex?(i) refers to the
texture value of the pixel i in the background image. Parameters /(i) and I5(i)
represent the intensity value of the pixel i in the current image and in the background
image, respectively. If |I(i) — I®(i)| — 0, the pixel i has a high probability to be

a background pixel, and exp (—”“)%IB(’)') — 1. Otherwise, it may belong to the

edge caused by the foreground boundary, and exp (— M) — 0. The parameter

¢ is a constant, which is set to 50 in all our experiments. Figure 3 shows the
comparison results by using simple subtraction method and our method. Obviously,
most dynamic edges caused by foreground object are well preserved, but most static
edges are greatly attenuated by our method. Differently, though simple subtraction
method can remove the static edges successfully, it unfortunately deleted some
dynamic edges.

5.2.3 Spatial-textural MRF model (StMRF)

We have found that the extracted object has no a sharp/clear boundary (either under-
estimating or over-estimating) if we employ the MRF models introduced above. The
major reason is that they consider a boundary pixel as a normal pixel, whose energy
is always affected by its neighboring pixels in the MRF framework. To solve this
problem, we have involved texture information when designing the energy function,
since texture is a good clue to detect an object boundary. More specifically, if a
pixel is labeled as the boundary pixel by our texture analyzer, the relation energy
covered by an edge energy term, between this pixel and its neighborhood is assumed
to be smaller. This is because we assume that the boundary pixel more relies on
its node energy, but has a reduced influence from its neighborhood. Conversely, we
can reduce the influence of the boundary pixel on its neighborhood as well, thereby

Fig. 3 Dynamic edge detector. Left: original image. Middle: dynamic edge by subtracting the edge
in the background image from the edge of the current image. Right: our method
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avoiding over-estimating boundary situations. Mathematically, the energy function
is defined as:

E(fld) = E, + E, + E{ + E, ()

where parameters ES, E refer to the node energy in the spatial dimension and
the node energy taking texture information into account, respectively. Since the
temporal continuity term cannot bring a big gain, we do not consider it in our energy
function design. Parameter E3 is defined as:

E, =) Vi(f.d), and Vi(fd)=3(f, P). (6)

Here, §(-, -) denotes the Kronecker delta function. The new parameter E!, refers to
the node energy based on texture information, which is specified as:

E, =Y "Vi(f.d). and V!(f d) = Diexture(i)/255. (7)

The smoothness energy E? in (5) is developed in a spatial network, which consists
of nodes connected by edges that indicate conditional dependency. Normally, E? is
modeled by a Generalized Potts distribution, which is specified by:

Ei= Y Vi(fd). and Vi(f.d)=5f. f). (8)

(i, NeC;

The parameter E! in (5) is the smoothness energy based on texture information,
defined by

E. = Z Vij(ﬁ d), and Vl{j(f, d) = —0.5 x 8(I;, Ij) x Dtexture(i)/255. (9)
(i, peC;

5.2.4 Energy function minimization by dynamic graph cuts

Dynamic graph cuts [13] is proposed to solve any similar energy function. Consider
two MRFs M, and M, whose corresponding energy functions E, and E}, differ by a
few terms. Suppose the MAP solution of M, can be available by solving the max-flow
problem on the graph G, and the energy E,, and now we want to find the solution of
M},. The core idea of this dynamic concept is that we only find the MAP solution for
the different regions between G, and G in the residual graph, but reuse max-flow
solution of G, for the unchanged regions. Since G; has only slight difference with
G,, the whole optimization procedure of MRF is significantly enhanced in execution,
thereby resulting in a real-time algorithm.

6 Occlusion handling using nonlinear regression

In this paper, we also employ the silhouette-related image features to locate people
during the occlusion. However, our technique is different from the method in [10] in
two aspects: (1) we do not use natural vertices at the silhouette boundary of the
people, since we have found that this image feature is too sensitive to the noise
and the shape of the silhouettes; (2) unlike the method [10] that directly treats the
projection histograms of the silhouettes, we firstly model the contour of the silhouette
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by a nonlinear regression algorithm. Afterwards, we search relative maximum points
on a smooth curve which is automatically generated by the regression technique. In
our model, each relative maximum point corresponds to one visual person in the
occlusion. Our method is robust against the case where the silhouette of the person
is fragmented, e.g., only a part of the head is segmented.

6.1 Locating the people during the occlusion

Once acquiring the segmented binary map of humans, we can obtain the contour of
the upper part of the human by using:

C(x) =max{x | (x,y) € O}, (10)

where Q is the collection of the foreground pixels (x, y) on the binary map. After
obtaining the contour map, the next step is to find the relative maximum points
on it. Instead of directly searching on the map, we search relative maximum points
on a smooth curve which is automatically generated by the regression technique.
Therefore, our method is robust against uncompleted body silhouettes and the
noises. Figure 4 illustrates the basic components of our complete occlusion-handling
scheme, where two major components are people locating and people recognizing.

Given the contour C(x), we intend to find a smooth curve (function) to model
it. This problem can be solved by minimizing 2, which is the sum of the squared
residuals over m points for the model F(c, x), hence

m

X2 =Y (Cx) — Fle,x)). (11)

i=1

The parameters of the model are in the vector ¢ = {cy, ¢y, ...}. The model F(e, x)
used in this algorithm is a Gaussian model, whose term number equals to the number
of persons in the occlusion. The number of the person in the occlusion can be easily
determined by the occlusion-detection component. For instance, if we know that
there are n persons involved in the occlusion, the applied Gaussian model would
have n terms, and be written as:

F(e,x) = Zc,lexp ( (x—cp)? ) . (12)

2c2 B

Q‘@‘) 8| Templatel

contour Ll :
b, Q Template2

Segment
object

Original image Locate people Recognize people

Fig. 4 The illustration of the complete occlusion handing scheme, where two major components are
people locating and people recognizing
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The Levenberg-Marquardt optimization algorithm helps to solve the minimization
problem mentioned above, returning the best-fit vector ¢ and their covariance matrix
of the individual components. Once we obtain all the parameters of F(c, x), the next
step is to find the relative maximum (peak) points on this curve, each corresponding
visually to the head of one person. Our model is fully automatic, e.g., it can output
two peak points when two persons are partially occluded, but provide only one peak
point when they are completely occluded.

6.2 Recognizing the people during the occlusion

Apart from locating the person during the occlusion, it is also required to recognize
the person. People recognition is actually a procedure that finds the correspondences
between detected candidates and known templates. In our previous work [8], we
have designed a template matching scheme based on mean-shift algorithm [4].
Assuming that there are N templates for N persons, and all the templates are
generated and maintained by the mean-shift algorithm before the occlusion occurs.
The probability of the feature {u;},_, ,, in the n template is T, (u;). Here, u;
represents the color histogram distribution and i denotes the bin number of the
histogram. Furthermore, we use the same method to model the appearance of the
blobs obtained by the people-locating module, and represent them by Wj(ui). The
aim of template matching is to find the best match to the template. Mathematically,
finding the best match means maximizing the correspondence between the templates
and the blobs in the occlusion, so that we compute

Cj = argmax p (Wj(u;), fn(ui)). (13)

The term p(Wj(ul-), Tn(u,-)) is a metric to measure the matching between the tem-
plates and the target candidate. For metric p, the Bhattacharyya coefficient [4] is
used because of its performance, which is defined by:

p (W), Tu)) = 32\ Wtw - Tuta. (14)
i=1

If we look at our color distribution model more carefully, we can find that each
pixel within the blob equally contributes to construct the model. This is absolutely
correct for non-occlusion case. However, it is not optimal when having occlusion
among objects, because some pixels belonging to one object must be overlapped by
some other pixels of another object in this case. Apparently, if those overlapped
pixels are still counted in the color model of this object, a large error would be
generated. For this reason, we need a specific color model for occlusion case, which
takes the object interaction into account. Our basic idea is that we trust non-
overlapped area more, but attenuate the contributions from overlapped area when
constructing color distribution model. More specifically, if a pixel belongs to non-
overlapped region, it is expected to have bigger weight in the template-matching
procedure. Otherwise, we assign a small weight to it. This idea can be formulated as:

PG =D wi Wiw) - Tu(wy), and w; = ) (15)

.
i=1 > Tj(w)
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Fig. 5 Illustration of object
interaction. We assign small
weights to black areas

Here, w; is a weight factor assigned to each pixel within the blob. If the pixel is not
overlapped by others and its color does not appear in other objects, w; — 1, which
degenerates to (14). On the other hand, if the pixel is a overlapped pixel and its
color must appear in other objects, w; — 0, which means this pixel would give zero
contribution to the matching metric. Our weight-based template-matching algorithm
adequately considers the interactions between objects and adaptively assigns the
weight to a pixel according to its possibility to be overlapped. A geometrical
explanation is illustrated in Fig. 5, in which three persons are interacted with each
other. In this example, we assign small weights to pixels in the black areas, which can
be computed by (15).

7 Experimental results

Our proposed system is implemented using C++ on the Windows XP platform, and
the computation time is measured on a 3 GHz Pentium 4 computer with 1 G RAM.
We have tested the presented algorithms on a database, containing 15 videos. These
videos are selected based on the suggestions from our hospital partner, which can
represent most of the typical situations in a delivery training course. The length of
each video varies from 2 min to 25 min. Two test videos and their ground truth data
are found from public databases, which are used to evaluate our object segmentation
and tracking algorithms. The rest videos are captured by a TRV30E video camera
from a leading manufacturer.

7.1 Evaluation of camera calibration algorithm

We have tested our camera calibration algorithm using two video sequences, which
were captured at our office (slightly different lighting conditions and view angles).
Our algorithm is correct for almost 100% of the sequences, but only fails at several
image samples, where one of the white lines is largely occluded by moving persons
(> 70% pixels are invisible). Fortunately, this false calibration can be easily detected
by measuring the difference of camera parameters between two consecutive frames,
because camera parameters in these two frames should be similar when the camera
is fixed in the scene, which is indeed our case. Note that we only compute and refine
the camera parameters using the first 10 frames of a sequence in our system, since the
camera in our application is supposed to be fixed. Figure 6 shows example pictures,
where the results of white-pixel detection, white-line detection and model fitting
are illustrated. It is observed from the second example that our algorithm is robust
against the situations, in which the moving person wares a cloth with white color or
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Fig. 6 Line detection-based camera calibration. Left: white point detection. Middle: line detection.
Right: model fitting

the white lines are partially occluded by moving persons. As we mentioned before,
this camera calibration algorithm reuses and simplifies the idea we proposed in the
previous work. For more intensively experimental results, we refer to our earlier
publication [7].

7.2 Evaluation of StMRF-based object segmentation algorithm

Our proposed object segmentation algorithm has been tested on two video se-
quences, where the first sequence with ground truth is downloaded from VSSN’05
(foreground detection competition) and the second one is captured in our office.
Both sequences demonstrate the indoor environment with stable lighting condition,
which is similar to the scenario of delivery simulation training course in the hospital.
We have also compared our StMRF algorithm with Kernel-based algorithm [6],
GMM-based algorithm [22], and the SMRF-based algorithm. The results are re-
ported in Fig. 7, where the subfigure (a) gives several image samples of different
methods, in which the results achieved by the GMM algorithm, SMRF model, and
StMRF model are shown, respectively. It can be observed that foreground segmented
by the GMM algorithm includes noises, which are not intended foreground objects.
Though SMRF model filter noisy areas out, the boundary of the moving person
is considerably less or over estimated by this model. Conversely, our proposed
StMRF model effectively reduces the influence from the noise, while keeping a sharp
boundary at object of interest (see foot and head areas of the image). The subfigure
(b) draws the ROC curves of GMM algorithm, kernel-based algorithm, SMRF
algorithm and also our StMRF algorithm. Obviously, StMRF is much better than the
first two methods and slightly better than SMRF algorithm, which also reflects that

Fig.7 Object segmentation results. a Image samples achieved by three algorithms. b ROC curves of p
four algorithms. ¢ Efficiency comparison of three algorithms
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our method is less sensitive to the thresholds used to determine the foreground pixels.
For the ideal indoor scenario (fixed camera + stable lighting condition), our method
can achieve > 97% accuracy. Finally, the subfigure (c) compares the execution time
of each algorithm tested on the second video (320x240), where we can find that
GMM-based algorithm is the fastest one. Both our algorithm and kernel-based
algorithm require an initialization step in the first frame. Kernel-based algorithm
uses this initialization step to estimate the background model, but our algorithm uses
it to initialize the graph-cut optimization. It can be viewed that our method spends
120.4 ms on initialization and 45.1 ms per frame for the rest frames. The graph in
Fig. 7c indicates that our dynamic concept-based system is close to a real-time system
with small fluctuations between successive frames.

7.3 Evaluation of regression-based occlusion handling algorithm

The proposed occlusion handling algorithm has been tested on 11 video clips (each
one has more than 1, 000 frames), where 8 videos are captured at our office including
2-3 persons, 2 videos are captured at hospital when a real delivery training course
happening, and 1 video is downloaded from a public database (PETS2004). In our
dataset, we have divided occlusion scenarios into two categories. The first category
describes the situation that persons walk towards each other and immediately split
after occlusion. The second category is that several persons join, and then walk
circlewise after they meet. Obviously, the second one is more challenging, in which
occlusion occupies more than 70% frames.

We compared our system with the mean-shift algorithm [4], the particle-filter
algorithm (200 particles per object) [16] and also the algorithm proposed in our
previous work [8], where we did not consider the interactions among objects when
generating the appearance model for each object. Table 1 shows the system capability
of treating the occlusion, in which NP is a simplified form of number of person. The
ground-truth data was manually marked, whose evaluation criterion is that at least
70% of the human body is included in the detection window. To sum up, the mean-
shift algorithm achieves an averaged 76.4% tracking accuracy during the occlusion
events. The particle-filter algorithm achieves an averaged 92.6% accurate rate, our
previous algorithm is correct for 88.7% frames when the occlusion occurs, and our
current algorithm is correct for 89.9% frames in the same condition. The result has

Table 1 System performance comparison

Occlusion type NP MS PF Han et al. [8] Our algorithm

Clipl Walk towards 2 100% 93.9% 100% 100%

Clip2 Walk towards 2 60.8% 85.9% 84.4% 85.1%
Clip3 Walk towards 2 100% 100% 100% 100%

Clip4 Walk towards 2 86.7% 97.2% 94.3% 95.1%
Clip5 Walk circlewise 2 80.6% 99.5% 95.6% 96.1%
Clip6 Walk circlewise 2 54.8% 99.2% 79.6% 82.2%
Clip7 Walk circlewise 2 100% 100% 100% 100%

Clip8 Walk circlewise 3 90.1% 81.1% 90% 90.5%
Clip9 Walk circlewise 3 70.2% 85.5% 93.1% 94.8%
Clip10 Walk circlewise 3 40.3% 89.8% 71.3% 74.7%
Clip11 Walk circlewise 3 56.7% 85.4% 70.1% 73.8%
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proved that our weight-based template-matching algorithm has better performance
when tracking people during the occlusion. Note that the most common failure was
caused by the situation, where our people locating algorithm mistakenly indicates
the position of each person. Figure 8 portrays four examples, where we show the
tracking results before the occlusion, during the occlusion and after the occlusion.
The first and third videos were captured at our office, the second one is from
PETS2004 database and the last video demonstrates the real delivery training course
at a hospital.

In addition to comparing the performance of these four algorithms, we have
also evaluated their efficiency. Figure 9 gives the time consumed for each tracking
algorithm during the occlusion, and also the execution times of the whole system. In
the occlusion situation, the average execution times per frame for the tracking com-
ponent of mean-shift, particle-filter, our previous work and our current technique are

Fig. 8 Occlusion handling. Left: prior to occlusion; middle: during occlusion; right: after occlusion
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20.45, 504.92, 9.12 and 9.87 ms, respectively. Apparently, our previous technique [8]
is the most efficient algorithm. And, our current technique is slightly expensive than
our previous work, because it requires to compute the wights for some overlapped
pixels. Moreover, the execution times per frame for the complete system (mean-
shift, particle-filter, and our current method) including object segmentation, object
tracking and trajectory generation, are 54.52, 553.78 and 49.86 ms, respectively.
The graph in Fig. 9 reveals that our proposal is a near real-time system with small
fluctuations between successive frames.

8 Conclusion
In this paper, a new system for automatic analysis of the behavior of a small group
of persons based on video signal has been introduced, thereby concentrating on

three primary contributions. First, we take the texture information into account
when designing the energy function for DMRF-based object segmentation, so that
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the silhouette of the object can be extracted accurately. Second, to address the
occlusion problem, we have proposed an approach, where we model the silhouette-
related image features into a feature vector which is optimized using a nonlinear
regression algorithm. Therefore, the object position can be located through the
finding of the peak points of a smooth curve when object occlusion occurs. The last
contribution can be revealed that we embedded a camera calibration algorithm into
our framework. By doing so, the real-world speed of each person can be achieved,
which is invariant to the changes of camera position. It has been shown that our
algorithm can operate at near real-time speed with around 90% tracking accuracy
during the occlusion.

The future work will be the creation of the behavior-analysis phase based on
the input visual features, such as real-world speed and trajectory of each person,
which have been provided by the introduced system. Such a complete and automatic
evaluation system will benefit the delivery training in two aspects. Firstly, it facilitates
to find the mistakes made by trainees during the training course, allowing them to
further develop their clinical skills. Secondly, automatic system is highly efficient with
the increasing number of trainees.
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