Skip to main content
Log in

An incremental space to visualize dynamic data sets

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

In Information Visualization, adding and removing data elements can strongly impact the underlying visual space. We have developed an inherently incremental technique (incBoard) that maintains a coherent disposition of elements from a dynamic multidimensional data set on a 2D grid as the set changes. Here, we introduce a novel layout that uses pairwise similarity from grid neighbors, as defined in incBoard, to reposition elements on the visual space, free from constraints imposed by the grid. The board continues to be updated and can be displayed alongside the new space. As similar items are placed together, while dissimilar neighbors are moved apart, it supports users in the identification of clusters and subsets of related elements. Densely populated areas identified in the incSpace can be efficiently explored with the corresponding incBoard visualization, which is not susceptible to occlusion. The solution remains inherently incremental and maintains a coherent disposition of elements, even for fully renewed sets. The algorithm considers relative positions for the initial placement of elements, and raw dissimilarity to fine tune the visualization. It has low computational cost, with complexity depending only on the size of the currently viewed subset, V. Thus, a data set of size N can be sequentially displayed in O(N) time, reaching O(N 2) only if the complete set is simultaneously displayed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Alahakoon D, Halgamuge S, Srinivasan B (2000) Dynamic self-organizing maps with controlled growth for knowledge discovery. IEEE Trans Neural Netw 11(3):601–614

    Article  Google Scholar 

  2. Amarasiri R, Alahakoon D, Smith K, Premaratne M (2005) HDGSOMr: a high dimensional growing self-organizing map using randomness for efficient web and text mining. In: Proc. IEEE/WIC/ACM int. conf. on web intelligence, pp 215–221

  3. Asuncion A, Newman D (2007) UCI machine learning repository. University of California, Irvine, School of Information and Computer Sciences. http://www.ics.uci.edu/~mlearn/MLRepository.html

  4. Barioni M, Botelho E, Faloutsos C, Razente H, Traina, A, Júnior C (2002) Data visualization in RDBMS. In: Proc. IASTED int. conf. information systems and databases ISDB, pp 264–269

  5. Basalaj W (2000) Proximity visualization of abstract data. Ph.D. thesis, University of Cambridge Computer Lab. http://www.pavis.org/essay/

  6. Bederson BB (2001) Photomesa: a zoomable image browser using quantum treemaps and bubblemaps. In: UIST ’01: Proc. of the 14th annual ACM symp. on user interface soft. and technology, New York, NY, USA, pp 71–80. doi:10.1145/502348.502359

  7. Blackmore J, Miikkulainen R (1995) Visualizing high-dimensional structure with the incremental grid growing neural network. In: Proc. 12th int. conf. on machine learning, San Francisco, CA, USA, pp 55–63. citeseer.ist.psu.edu/blackmore95visualizing.html

  8. Borner K, Chen C, Boyack K (2003) Visualizing knowledge domains. Annu Rev Inf Sci Technol (ARIST) 37:179–255

    Article  Google Scholar 

  9. Chalmers M (1996) A linear iteration time layout algorithm for visualising high-dimensional data. In: VIS ’96: Proc. of the 7th conf. on visualization. IEEE Comp. Society, Los Alamitos, pp 127–132

    Google Scholar 

  10. Chen C (2004) Information visualization: beyond the horizon. Springer, New York

    Google Scholar 

  11. Chen C (2006) Citespace II: detecting and visualizing emerging trends and transient patterns in scientific literature. J Am Soc Inf Sci Technol 57(3):359–377. doi:10.1002/asi.v57:3

    Article  Google Scholar 

  12. de Oliveira JB (2009) Two algorithms for automatic page layout and possible applications. Multimed Tools Appl 43:275–301. doi:10.1007/s11042-009-0267-y

    Article  Google Scholar 

  13. Hassan-Montero Y, Herrero-Solana V (2006) Improving tag-clouds as visual information retrieval interfaces. In: Proc. of the I int. conf. on multidisciplinary information sciences and technologies, InSciT2006. Mérida, Spain

  14. Jolliffe IT (2002) Principal component analysis [electronic resource]. Springer, New York

    Google Scholar 

  15. Kaski S (1997) Data exploration using self-organizing maps. Ph.D. thesis, Finnish Academy of Technology

  16. Kaski S, Honkela T, Lagus K, Kohonen T (1998) WEBSOM—self-organizing maps of document collections. Neurocomputing 21(1–3):101–117

    Article  MATH  Google Scholar 

  17. Kruskal J (1964) Nonmetric multidimensional scaling: a numerical method. Psychometrika 29(2):115–129

    Article  MATH  MathSciNet  Google Scholar 

  18. Kruskal J, Wish M (1978) Multidimensional scaling. Sage, Newbury Park

    Google Scholar 

  19. Kruskal JB (1964) Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29:1–27. doi:10.1007/BF02289565

    Article  MATH  MathSciNet  Google Scholar 

  20. Law M, Jain A (2006) Incremental nonlinear dimensionality reduction by manifold learning. IEEE Trans Pattern Anal Mach Intell 28(3):377–391

    Article  Google Scholar 

  21. Law M, Zhang N, Jain A (2004) Nonlinear manifold learning for data stream. In: Proc. SIAM data mining, pp 33–44

  22. Lewis DD, Yang Y, Rose TG, Li F (2004) Rcv1: a new benchmark collection for text categorization research. J Mach Learn Res 5:361–397

    Google Scholar 

  23. Li Y, Shapiro L, Bilmes J (2005) A generative/discriminative learning algorithm for image classification. In: Proc. 10th IEEE int. conf. on computer vision ICCV’05, vol 2, pp 1605–1612

  24. Lopes AA, Pinho R, Paulovich FV, Minghim R (2007) Visual text mining using association rules. Comput Graph 31(3):316–326. doi:10.1016/j.cag.2007.01.023

    Article  Google Scholar 

  25. Malheiros V, Hohn E, Pinho R, Mendonca M, Maldonado JC (2007) A visual text mining approach for systematic reviews. In: ESEM ’07: Proceedings of the first international symposium on empirical software engineering and measurement. IEEE Computer Society, Washington, DC, USA, pp 245–254. doi:10.1109/ESEM.2007.13

    Chapter  Google Scholar 

  26. Morrison A, Chalmers M (2004) A pivot-based routine for improved parent-finding in hybrid MDS. Inf Visual 3(2):109–122. doi:10.1057/palgrave.ivs.9500069

    Article  Google Scholar 

  27. Nurnberger A, Detyniecki M (2002) Visualizing changes in data collections using growing self-organizing maps. In: Proc. int. joint conf. on neural networks IJCNN’02, vol 2, pp 1912–1917

  28. Paulovich FV, Minghim R (2006) Text map explorer: a tool to create and explore document maps. In: Proc. of the conf. on information visualization IV ’06. IEEE Comp. Society, Washington, DC, pp 245–251. doi:10.1109/IV.2006.104

    Google Scholar 

  29. Paulovich FV, Nonato LG, Minghim R, Levkowitz H (2008) Least square projection: a fast high-precision multidimensional projection technique and its application to document mapping. IEEE Trans Vis Comput Graph 14(3):564–575

    Article  Google Scholar 

  30. Paulovich FV, Oliveira MCF, Minghim R (2007) The projection explorer: a flexible tool for projection-based multidimensional visualization. In: Proc. XX Brazilian symp. on comp. graphics and image proc. SIBGRAPI 2007. IEEE Comp. Society, Washington, DC, pp 27–34. doi:10.1109/SIBGRAPI.2007.39

    Chapter  Google Scholar 

  31. Pinho R, Oliveira MCF (2009) Hexboard: conveying pairwise similarity in an incremental visualization space. In: IV ’09: Proceedings of the 2009 13th international conference information visualisation. IEEE Computer Society, Washington, DC, pp 32–37. doi:10.1109/IV.2009.12

    Chapter  Google Scholar 

  32. Pinho R, Oliveira MCF, Minghim R, Andrade MG (2006) Voromap: a Voronoi-based tool for visual exploration of multi-dimensional data. In: IV ’06: Proceedings of the conference on information visualization. IEEE Computer Society, Washington, DC, pp 39–44. doi:10.1109/IV.2006.131

    Google Scholar 

  33. Pinho R, Oliveira MCF, de Andrade Lopes A (2009) Incremental board: a grid-based space for visualizing dynamic data sets. In: SAC ’09: Proceedings of the 2009 ACM symposium on applied computing. ACM, New York, pp 1757–1764. doi:10.1145/1529282.1529679

    Chapter  Google Scholar 

  34. Rodden K, Basalaj W, Sinclair D, Wood K (1999) Evaluating a visualization of image similarity as a tool for image browsing. In: Proc. of the 1999 IEEE symp. on information visualization

  35. Rodden K, Basalaj W, Sinclair D, Wood K (2001) Does organisation by similarity assist image browsing? In: Proc. SIGCHI conf. on human factors in computing systems, pp 190–197

  36. Sammon JW (1969) A nonlinear mapping for data structure analysis. IEEE Trans Comput 18(5):401–409. doi:10.1109/T-C.1969.222678

    Article  Google Scholar 

  37. Wise JA (1999) The ecological approach to text visualization. J Am Soc Inf Sci 50(13):1224–1233. doi:10.1002/(SICI)1097-4571(1999)50:13<1224::AID-ASI8>3.0.CO;2-4

    Article  Google Scholar 

  38. Wong P, Foote H, Adams D, Cowley W, Thomas J (2003) Dynamic visualization of transient data streams. In: Proceedings IEEE information visualization, pp 97–104

Download references

Acknowledgements

The authors thank the financial support of FAPESP (Grants 2005/02263-2 and 2008/046228) and CNPq (Grant 305861/2006-9). Part of Roberto Pinho’s research was conducted while visiting Drexel University under the supervision of Dr. Chaomei Chen and the support of a CAPES PDEE Grant (BEX 0651-07-9). He wishes to thank Dr. Chen and fellow researchers at Drexel University for their invaluable contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Dantas de Pinho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Pinho, R.D., de Oliveira, M.C.F. & de Andrade Lopes, A. An incremental space to visualize dynamic data sets. Multimed Tools Appl 50, 533–562 (2010). https://doi.org/10.1007/s11042-010-0483-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-010-0483-5

Keywords

Navigation