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Abstract. In this paper, a content-aware approach is proposed to design multiple test conditions for 

shot cut detection, which are organized into a multiple phase decision tree for abrupt cut detection 

and a finite state machine for dissolve detection. In comparison with existing approaches, our 

algorithm is characterized with two categories of content difference indicators and testing. While 

the first category indicates the content changes that are directly used for shot cut detection, the 

second category indicates the contexts under which the content change occurs. As a result, 

indications of frame differences are tested with context awareness to make the detection of shot cuts 

adaptive to both content and context changes. Evaluations announced by TRECVID 2007 indicate 

that our proposed algorithm achieved comparable performance to those using machine learning 

approaches, yet using a simpler feature set and straightforward design strategies. This has validated 

the effectiveness of modelling of content-aware indicators for decision making, which also provides 

a good alternative to conventional approaches in this topic.   
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1 Introduction 

Shot boundary detection is a major and important task for all content based video processing, 

analysis, and applications. For the past decades, numerous algorithms and techniques have been 

reported in the literature. Recent research trends in semantics based video content analysis [1,2] 

requires shot boundary detection as the first step to divide video sequences into sections 

maintaining a certain level of visual consistency so semantics can be extracted within content 

consistent sections [4,11,12,15]. To provide objective evaluations, the well-known TRECVID 

activity is introduced as an annual event to gather and measure relevant techniques using their 

collected massive video data with ground truth maps [3,5,7,13], and the work in this paper formed 

part of our submissions to the TRECVID 2007.  

To detect shot cuts, most of the existing work reported in the literature measures the content 

difference between the current frame and its preceding one, and then apply a threshold to decide 

whether the difference measured is large enough to justify a cut detection [6,9,14]. Many algorithms 

have been developed and reported on how to decide such a threshold, which can be briefly 

summarized as: (i) statistics based approaches such as Bayesian rules, maximum likelihood based 

probabilistic modelling etc. [3,10]; (ii) empirical studies [9,14]; and (iii) machine learning 

approaches such as SVM, neural networks etc to bypass the threshold and make decisions based on 

the training and learning process [5,7,13]. The fundamental issue here, however, is that such a 

measured neighbourhood frame difference indicator alone would not provide sufficient information 

for shot cut detection.  

Consequently, it is our aim to investigate content-aware approach for this task in order to 

make use of multiple indicators, which include our proposed four feature measurements and each of 

them is extracted with context information over a temporal window. With the assistance of our 

content-aware modelling, a top-to-down processing is employed for robustness in detecting shot 

transitions, using decision-tree and finite-state-machine (FSM) based techniques. The detection 
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itself contains a coarse-to-fine procedure (initial detection followed by validations) for improved 

accuracy and robustness. Since the proposed approach is completely implemented in MPEG 

compressed domain, it benefits additionally from high efficiency achieved.  

Decision trees and FSM are straightforward solutions for machine learning and data mining, 

which provide a great framework for both description of the relevant contexts and detection of shot 

boundaries within corresponding contexts. Actually, the decision tree in the paper was produced by 

a learning process, where sets of training videos are processed and analyzed. From the analysis, a 

decision tree structure is determined as such that contexts can be represented by a set of conditions. 

The learning process is similar to that of C4.5, yet Fisher‟s discriminant ratio rather than entropy is 

employed. In the initial detection stage, we only check the discriminative power of each single 

attribute in building the decision tree. While for validation, up to two attributes are checked 

together. If the classification error using a single attribute is comparable to that using two, this 

single attribute is employed for a simplified tree structure. The extended learning process will be 

applied to general pattern recognition tasks and reported separately.  

There are several advantages for using decision trees and FSM, such as i) it uses a white-box 

model and is easy to understand and interpret, ii) it is able to deal with both numerical and 

categorical data, iii) it is robust and perform well with large data in a short time, iv) it can be 

validated using statistical tests. Moreover, FSM is particularly useful in modeling complex events 

which contain several states such as gradual transitions, such as good results reported in [27].   

In comparison with our previous work [28], the novelty of this paper can be summarised as 

follows, though both the two papers focus on shot boundary detection in MPEG videos. Firstly, 

features used in this paper, including the luminance difference, edge ratio difference, motion 

feature, and distance-frame difference, are completely different from those in [28]. The latter 

utilizes statistical mean, standard derivation and the percentage of active blocks derived from 

difference of neighboring DC-images.  
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Regarding cut detection, in [28] cuts are categorized into five sub-classes and detected via a 

combined likelihood derived by neighboring DC-images, followed by global similarity based 

validation via phase-correlation on DC images to remove motion-caused false positives. In this 

paper, however, cuts are detected in a contextual window of 11 frames using a multiple phase 

decision tree, including one coarse decision stage and two validation stages. In the validation stages, 

both false positives and false negatives are further removed using decision trees considering motion 

effects. The straightforward design of the proposed algorithms in this paper is well motivated in 

comparison with the likelihoods defined in [28].  

For gradual transitions, separate model-based approaches are used in [28] to detect fade, 

dissolve et al., such as fade detection via determining a V-shape in the corresponding energy curve. 

In this paper, however, finite state machine is used to detect both dissolve and fade effects, where 

fade is considered as a special case of dissolve.  

The rest of the paper is organized as follows. In Section 2, the related work is summarised 

and analyzed. Section 3 reports our proposed content-aware approach in extracting features and 

constructing multiple indicators for shot detection. How the multiple content difference indicators 

are organized into a decision tree for abrupt cut detection and our FSM approach for dissolve 

detection are described in details in Section 4. Finally, we report experimental results and 

evaluations of the proposed algorithm in comparison with all the participating teams in TRECVID 

2007 in Section 5, and provide concluding remarks to finish this paper in Section 6.  

2. Related Work 

Detection of shot boundary for video segmentation was originally introduced decades ago to 

detect abrupt cuts in videos [3, 9, 12-13]. Since then, many techniques have been developed in both the 

compressed and the uncompressed domains. In general, techniques in the uncompressed domain can be 

transferred to the compressed domain, though with lower resolution due to block-based representation 

of the data. On the other hand, compressed domain processing is highly desirable as it avoids the 
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expensive inverse discrete cosine transforms (IDCT) used in video decoding. More importantly, it can 

make good use of many intrinsic pre-computed features in MPEG such as motion vectors and block 

averages for both accuracy and efficiency. Some representative techniques from both the uncompressed 

and the compressed domains are summarized and analyzed as follows. 

In uncompressed-domain, frame difference is usually measured using pixel difference, 

histogram similarity, texture/edge and inter-frame correlation, etc., followed by decision making via 

thresholding, statistical analysis and machine learning [3, 5, 8-10, 13-14]. In Grana and Cucchiara 

[3], a linear transition model is developed to identify the shot transition centre and length. The 

proposed iterative algorithm measures the linear behaviour of shot transitions by minimizing an 

error function, though its performance may suffer from camera and object motions. In Fang et al. 

[8], colour histogram intersection, motion compensation, texture change and edge variances are 

integrated in a fuzzy logic framework for temporal segmentation of videos. However, it seems that 

relevant domain knowledge are excluded in the proposed fuzzy rules. In Yuan et al. [13], a graph 

partition model is employed to construct features for the SVM classification of shot boundaries, 

where the massive training and the complex fusion of SVM classification results are required. In 

Bescos et al. [14], inter-frame distance values are mapped onto a multidimensional space, and shot 

changes are then detected using a set of manually defined thresholds, 19 for cut detection for 10 

features plus another 10 features for gradual transitions. In Cooper et al. [5], the local temporal 

structure of shot transitions is represented using the pair-wise inter-frame similarity derived from 

YUV colour histograms. A discriminative feature selection process is performed, offline, based on 

mutual information for the KNN (K-Nearest Neighbours) classification of video shots. In Urhan et 

al. [9], a hard-cut detection system is presented based on modified phase correlation with 

application to archived films. Video frames are spatially sub-sampled for phase correlation and the 

generated peaks are detected by double thresholding, i.e. the global and local thresholds. Though it 

benefits from phase correlation in terms of robust to illumination changes, it also suffers the 

drawbacks of phase correlation in dealing with non-overlapped regions, noise and motion-caused 
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inconsistency between images. In Boccignone et al. [10], a video is partitioned into shots based on a 

foveated representation. The proposed method computes a consistency measure of the foveation 

sequences and a Bayesian inference is adopted to detect the change of consistency. Due to the 

requirement of computing visuomotor traces, the method is computing intensive.  

Regarding shot detection in the compressed domain, most of the work using features like 

DCT coefficients, motion vectors, and macro-block type information to characterize shot boundaries 

[7, 20-21, 23-25]. However, the shot boundary detection is disturbed by special editing effects. In 

Cao and Cai [7] and Pei. et al [21], macro-block information is utilized for shot detection, followed 

respectively by a multi-class SVM (support vector machine) classifier and simple thresholding. 

Another compressed domain method, introduced in [20, 23, 24], extracts DC images from videos 

and an intensity variance sequence is generated to find “U” shape intervals for shot detection via an 

ART2 neural network. In practice, however, such “U” shape of intensity variance sequence often 

becomes indistinct due to motion, light changes, and error propagation caused by inaccurate feature 

extractions. For accurate shot detection, it is essential to combine such features and introduce 

motion adaptive measurements of the changes, such as using the magnitude of motion vectors to 

adjust the decision thresholds [25]. This will be considered in our content-aware modelling which 

will be described in details in the next sections. 

3. Constructing content-aware indicators  

Three frame difference measurements over a temporal window are extracted to form our 

content-aware indicators for shot cut detection, which include (i) neighbourhood frame difference 

indicators to measure the content difference between the current frame and its preceding one; (ii) 

inter-frame difference indicators to measure the content difference between the current frame to be 

examined and its preceding thd  frame where 1d ; and finally (iii) comparative frame difference 

indicator to measure the difference of all the indicators inside the shifting window. While the first 

frame difference indicator follows the same principle adopted by all existing work [6-21] that, if 
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there exist a cut at the current frame, there should exists some content difference between the two 

neighbouring frames. The second frame difference indicator is mainly used to verify such a possible 

cut by examining the difference between the current frame and a frame some distance away [14,18] 

to overcome the false positives caused by factors other than cuts, such as motion, camera 

movement, or editing effect etc. Selection of the frame distance d  is dependent on the degree of 

motion and other effects which may cause apparent content changes within frames. Too short 

distance may have inadequate content changes for shot detection, and too long distance may lead to 

more false alarms. In fact, such a distance has been used by others in [14] and [18] and 9d  is 

adopted to represent 0.36s in videos at a frame rate of 25 frames per second (fps). The third frame 

difference indicator is to compare the indicators within a shifting window to test the consistency 

and remove the false detections for cases that some cuts may present small content differences.  

3.1 Extracting frame difference measurements 

To measure the three frame difference indicators, we propose to extract four features to 

construct the neighbourhood frame difference indicators and fully exploit MPEG compression 

techniques to enable shot cut detection to be carried out in compressed domain for efficiency. These 

features involve luminance, colour, edge, and motion, details of which are described as follows. 

Given a MPEG compressed video input, firstly a DC image sequence nY  is extracted. If the 

original video frame size is HW  , the DC image will have the size of 88 HW  . Around the 

current DC frame, nY , which is to be examined for shot cut detection, we define a shifting window 

with 11 neighbouring DC frames to test all the features extracted and determine whether there exists 

a cut or not between the frame 1nY  and the frame nY  . In other words, the proposed shot cut 

detection is essentially carried out inside the window of  ]5,5[|  kY kn . 
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Based on the work described in [25], a normalized luminance feature is proposed to make it 

convenient for evaluation of all the features in a systematic and unified way. Such normalized 

luminance difference between the thn  frame and the thn )1(   frame is represented as nD  below: 

   

 
M

i

N

j nnn jiyjiyMND
1 1 1

1 ),(),()255( . (1) 

where M  and N  denote respectively the number of 88  blocks inside video frames along the 

vertical direction and horizontal direction; ),( jiyn  is the DC luminance value of the block 

positioned at ),( ji  inside the thn  DC frame, and ]1,0[nD . 

Considering our previous work on block-based edge detection directly carried out in 

compressed domain [26], the following edge ratio difference between the thn  frame and the thn )1(   

frame is also proposed as defined below: 

|))1()(||,)1()(max(|)( 1   nNnNnNnNMN eyeyexexn . (2) 

where )(nN ex  and )(nNey  denote respectively the number of vertical and horizontal block-edges in 

the thn  frame, and n  refers to the edge difference between the thn  frame and the thn )1(   frame.  

As MPEG has the motion information available in the compressed domain, a normalized 

motion feature is extracted based on the MPEG motion vector  ),(),,( jiVjiV yx
 in the thn  frame as: 

)|),(|,|),(|max(
,

1

,

1  
ji yvyji xvxn jiVTjiVTM . (3) 

where  
vyvx TT ,  is the maximum allowable motion vector designed by MPEG. 

Since shot transitions may occur with limited intensity changes but apparent chromatic 

differences, especially for gradual transitions, another distance-frame difference n  is defined to 

include all YUV components using three histograms )(Y

nH , )(U

nH  and )(V

nH . With 32 bins being 

contained in each histogram, n  is defined below where the parameter d  denotes a frame distance 

as mentioned before. 
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where
vuy NNN ,,  are the corresponding number of 88  blocks for Y, U, V components.  

Consequently, the features defined above can be employed as content features, which can be 

directly used to indicate the content difference and thus detect the shot cuts, or context features, 

which can be used to indicate the contexts of the content changes. For example, the luminance and 

colour can be readily used as content features since both of them are primarily used to represent the 

visual information in all image generation process (such as TV, cameras, printing etc.). Yet motion 

and edges can be used as context features since both of them mainly reflect the activities inside the 

captured visual scenes. In this way, shot cut detection can be made adaptive to the context changes 

as well as content changes. When motion is high, for example, it indicates that proportional content 

difference is caused by motion rather than by cuts, and thus the threshold should be moved higher. 

To this end, we have assembled a training video set drafted from the TRECVID test sequences in 

2001 and 2005, and carried out empirical studies by extracting the neighbourhood frame difference 

indicators for all the four features for appropriate decision making.   

3.2 Extracting context-ware indicators 

With the extracted feature measurements in terms of the luminance difference nD ,  edge 

ratio difference n  , motion feature nM , and distance-frame difference n , shot cuts can be 

determined via examining if these measurements are sufficient enough against one or more given 

thresholds to indicate corresponding shot transitions [17, 21]. Since the content changes have 

different appearances and may lead to a wide range in measuring these features, such simple 

thresholding seems lack of robustness. As a result, we propose to model content-aware indicators 

from these measurements for decision making as follows.  
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Firstly, for each content feature the dominant range of its values can be determined within 

an interval [ LT , HT ] via statistical analysis in correspondence with the ground truth inside a training 

set. In fact, LT  is a value where no more than 10% of all corresponding shot transitions have their 

values below it; and HT  is a value where no more than 10% of shot transitions have their values 

above it. Details of determined ranges for these features are summarised in Table-I. If the 

corresponding feature value is smaller than LT , it is unlikely to be a shot event. On the contrary, if 

the value is larger than HT , it is almost certainly to be a shot transition. In more common cases, 

however, most of the values will be found lying within the range ( LT , HT ), and more contexts need 

to be identified to fine tune the shot detection by determining some relative change ratios as 

described below, rather than using the absolute values for robustness. 

Secondly, several change ratios are determined and denoted as nD̂ , n̂ , and  n̂  by 

)(max,/ˆ
0],5,5[

22 mn
mm

nnnn DDDDD 


     (5) 

)(max,/ˆ
0],5,5[

22 mn
mm

nnnn 


       (6) 

)(max,/ˆ
0],5,5[

22 mn
mm

nnnn 

     (7) 

where 2nD , 2n  and 2n  respectively denote the peak value in the temporal window excluding the 

current value of nD , n  and n .  

Apparently, large change ratios above indicate significant content changes at the frame n , 

and this is measured by comparing the change ratios against a pre-defined threshold  . In our 

system, this parameter is empirically set as 2.2 . Larger the values of   selected, the higher the 

comparative peaks are required to confirm the shot transitions. How to use these extracted 

measurements for shot boundary detection is discussed in the next section. 

4. Content-aware enabled decision making for shot boundary detection 
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In this section, we apply modelling of content-aware indicators for shot boundary detection. Among 

several shot transitions, abrupt cuts and dissolve effects are utilized to validate our techniques as 

they are the most commonly encountered shots in videos [3, 12]. Please note that our dissolve 

detector can also detect fade effects as the latter can be considered as a special case of dissolve [3, 

14, 19]. Relevant technical details are presented as follows. 

4.1 Detecting abrupt cut transitions 

With the proposed multiple frame difference and content-aware indicators, we design the 

shot cut detection in a coarse-to-fine manner with three phases. The first phase is an initial shot cut 

detection, in which we aim at filtering through all suspicious candidates that could be abrupt cuts. 

Following that, two further phases are used to validate cut and non-cut candidates, respectively. 

Given the current DC frame nY , its luminance content feature nD  is primarily used for the 

first phase cut detection and the whole process is illustrated in Fig. 2. As mentioned earlier, if nD  is 

smaller than LT , it refers to a non-cut candidate. On the other hand, Hn TD   refers to a cut. When 

nD  is found within the interval of ],[ HL TT , it is hard to make a decision as cut or not. As a result, 

additional information using our defined content-aware indicators is employed to determine cut 

candidates. Since the major aim in this first phase is to detect as many cuts as possible, a cut 

candidate is identified if at least one of its associated change ratios, including nD̂ , n̂  and  n̂ , is 

larger than the threshold  . For all the cut candidates, they need to be further validated in the 

second stage. For non-cut candidates, they are verified in the third stage to recover cuts which have 

very limited inter-frame difference in nD  measurements but large relative change ratios. 

In the second phase, the primary aim is to remove false positives by applying the principle 

that, if a peak value detected at nY  in the initial phase is accompanied by another inter-frame 

difference peak at 1nY , this peak difference at nY  is likely caused by factors other than a cut. As a 
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result, the inter-frame difference indicators play leading roles in the second phase detection, and the 

entire process is structured into another decision tree as illustrated in Figure-3. 

As seen, satisfaction of the first condition   nHn T ˆ
1  establishes that the peak 

frame difference detected in the first phase is not caused by a true cut, since it is accompanied by a 

high inter-frame difference in other frame(s) within the temporal window, yet there exist no 

comparative peak at nY . As a result, the input cut candidate is detected as a false positive. 

Non-satisfaction of the first condition leads to further examination of 1 n  across all the 

remaining regions, where 3/)(1 LHLM TTTT   and 3/2*)(2 LHLM TTTT   are two 

parameters to equally divide the whole interval of ],[ HL TT  into three parts. Accordingly, Figure-3 

illustrates that the remaining tests of 1 n  is arranged in terms of ),[ 231 HMn TTC   , 

),[ 2121 MMn TTC   , and others where 11 Mn T  , respectively. Since all these regions have 

different strength in indicating the inter-frame difference at 1nY , we need to use other features to 

indicate its contexts and complete the false positive detection. 

Furthermore, in the test Hnn TMC   31 , Hn TM   is a context condition to 

improve the strength of 31   Cn . In other words, if 31   Cn  is true and meanwhile the motion 

feature is more than the higher threshold, indicating that the peak value between nY  and 1nY  is 

probably caused by motion. As a result, the initially detected cut could still be a false positive.  

 A positive test on 21   Cn  indicates that a relative weak peak is still detected at 1nY , and 

the effect of motion is examined using a relative lower threshold as Ln TM  . If both the two 

conditions hold, it refers again to false positives. Otherwise, the high frame difference is likely 

introduced by abrupt shot transitions, which is further verified by the relative change ratio n̂ . If 

 n
ˆ , it indicates a false positive; if  n

ˆ  , it is determined as a true positive of cut.  
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Regarding validation of non-cut candidates which are detected from the initial stage, the 

third phase is employed as shown in Fig. 4. Since the overall inter-frame difference is low, i.e. 

Ln TD  , for robustness we require false negatives satisfying that their associated three relative 

change ratios including nD̂ , n̂ , and  n̂  are all above the threshold  . Furthermore, neighbouring 

peak 1 n  and motion magnitude nM  are examined to ensure such relative content changes are not 

caused by motion and other effects, and this is constrained respectively by Ln T 1  and 

2/)( HLn TTM   to remove false negatives and recover missing cuts.   

4.2 Detecting gradual transitions of dissolve effects 

Dissolve effect is the most commonly used video transitions in post-production, which cross-fades 

from one shot to another and results from gradually scaling the intensity values of the two shots 

[20]. If such intensity change is modelled as a strict linear manner, a parabolic („U‟ type) shape in 

terms of the intensity variance curve (IVC) is expected for its detection [19, 20]. However, the U 

shape inside IVC is often corrupted in reality due to motion, camera flash, and many other factors. 

Consequently, it is difficult in practice to capture such transition process, or in other words, the 

transition process is not sufficiently clear to be captured by the intensity variance curve. As a result, 

the detected shot boundaries based on such an ambiguous parabolic shape of IVC become 

inaccurate. In addition, misdetection of such parabolic shapes could cause error propagation, 

producing negative impact upon detection of other dissolves. Figure-5 illustrates an example of 

IVC, from which it can be seen that the parabolic shape is not sufficiently clear and thus making it 

difficult to detect dissolves accurately in many practical cases.  

To look for an alternative feature and present stronger indication of dissolves, we have 

tested a range of possibilities and propose a new feature, MPEG motion compensation error 

indicator nerr , which is defined as follows:  
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 


nC

inn iDCCerr
1

1 )()(  . (8) 

where nC  is the number of inter-coded blocks, and   is the threshold applied by MPEG to decide 

whether a block should be inter-coded or not. 

In comparison with IVC, the MPEG motion compensation error indicator presents two 

advantages: (i) it can be readily extracted from MPEG compressed domain; (ii) it presents a 

sequence of peaks during dissolve transitions and thus can be exploited to detect dissolves. Figure-6 

presents a graph for the MPEG motion compensation error for the same example video illustrated in 

Figure-5, from which it is seen that a sequence of peaks is present in every dissolves. While such 

peaks may not indicate the increase and the decrease transition for dissolves, their starting and 

ending locations would certainly be helpful for detection of boundaries inside the dissolves. 

Unlike abrupt cuts which contain only single-frame transitions, a simple decision tree cannot 

be used for the detection of the dissolve effects due to its nature of complex gradual transitions. As 

a result, a multi-state finite state machine (FSM) is employed for dissolve detection, where several 

states are defined and each state has its decision rules to determine the transition boundary and 

verify the results. As summarized in Table II, actually four states are used from S1 to S4 which 

correspond to an initial state, detecting start of dissolve, detecting end of dissolve, and validation, 

respectively. In comparison with the work in [27], our FSM scheme features in: (i) we use only four 

states rather than five and two of them are defined differently; (ii) dissolve candidates are detected 

by monitoring the MPEG motion compensation errors in DC values.  

Before applying the FSM for dissolve detection, a pre-processing is introduced to filter those 

frames that are not likely to be a dissolve candidate for efficiency. This is achieved using the 

following conditions: 

.__

__

__

framesdissolvepossibleelse

framesdissolvenonthenTTMifelse

framesdissolvenonthenTerrTif

HnHn

nLn




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where Ln T  and Terrn   respectively correspond to small inter-frame difference and low 

MPEG motion compensation errors, which is inconsistent with the requirements of dissolve effects.  

Even the inter-frame difference is high, we abandon those frames whose motion magnitude nM  is 

too high so that motion-caused false positives can be constrained. In addition, T  is a new threshold 

introduced for nerr  , which is determined as 0.015 via empirical studies as discussed earlier.  

For all non-dissolve frames, we set their nerr  as zero for simplicity. Accordingly, the 

remaining operation is focused on those frames with non-zero nerr  values to detect candidates for 

dissolves under the principle that dissolves present a sequence of peak values in nerr . The structure 

of our designed FSM is illustrated in Fig. 5, and the conditions in controlling the state transitions 

are summarised in Table III. As can be seen, six conditions namely C1 to C6 are used to constrain 

the process of dissolve detection, and the motion compensation error nerr  is the primary clue for 

this purpose. The whole detection process and details on state transition are explained as follows.  

At the initial state S1, the transition from S1 to the start of dissolve state S2 is controlled by 

C1 when one candidate dissolve frame is detected, i.e. 01 nerr  and 0nerr . At state S2, the 

condition C2 helps it to merge continuous candidate dissolve frames into the dissolve candidate. If a 

non-dissolve frame is found via C3, this indicates a potential ending of the candidate dissolve 

effects, thus the FSM is moved to S3 for further detection. In a special case if the length of the 

candidate dissolve L  is too long and more than a given threshold maxL , we directly terminate S2 

and transition the FSM to S4 for verification. At the same time, condition C5 is used to enable state 

transition from S3 to S4 which indicates the termination of the candidate dissolve as consecutive 

non-dissolve frames are found more than a given gap gapL . Otherwise, the FSM goes back to S2 as 

the gap is too small and it is not a real termination of detection. The parameter gapL  is useful to 

allow short frame gaps of small motion compensation error between those of higher errors for 

robustness. Finally, at state S4 the condition C6 is utilized to validate the detected candidate 
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dissolve by examining if its length is long enough, i.e. more than minL , and also the average motion 

compensation error is more than the threshold T . If the validation is successful, a dissolve is 

detected. Otherwise, the FSM returns to the initial state S1 to examine newly inputted frames. In 

accordance with the definitions and requirements in TRECVID 2007, we set 5min L , 100max L  

and 10gapL  in our algorithm and competitive results are reported in the next section.  

5   Experimental Results  

To evaluate the proposed algorithm, we carried out extensive experiments on a number of test video 

clips from the TRECVID activity, which is organized by NIST (National Institute of Standards and 

Technology) annually [22]. We also submitted our detection results as one of the 9 runs to 

participate in the shot boundary detection task in TRECVID 2007, and therefore, the experimental 

results reported here are mainly for TRECVID 2007 test data set, in which the resolution of the test 

sequences is 240352  pixels. Table-IV provides a summary description of all test video sequences, 

including the total number of frames, abrupt cuts and gradual transitions within each video clip. 

The computing environment used for software implementation of the proposed algorithm 

includes: (i) a PC with 1.73GHz CPU, 512MB memory and windows XP operating system; (ii) 

Microsoft VC++ 6.0 programming platform. The performances of the proposed algorithm are 

measured by recall rate, precision rate, and F1 rate as defined by TRECVID [17, 23]. Table-V 

presents the experimental results of the proposed algorithm in terms of an overall average 

performance over the 17 test sequences in comparison with the results of other 14 participating 

teams. All the results are evaluated and announced by TRECVID 2007, where the recall and 

precision rate figures are listed in four groups, including overall, cuts, gradual transitions and 

gradual transition boundary frame accuracy, in accordance with the submission requirement 

specified by TRECVID 2007 organizers. While the two groups, cuts and gradual transitions, 

directly relate to the performances on cut detection and gradual transition detection respectively, the 

overall recall and precision rates are worked out according to the proportion of cuts and gradual 
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transitions inside each video sequence. The group, gradual transition boundary frame accuracy, is 

used by TRECVID 2007 to measure the accuracy of boundary detection for gradual transitions, and 

the figure specifies the percentage of detected frames that overlap with the ground truth. 

To obtain a combined measurement of both precision and recall, 
1F  measurement is also 

utilized whose definition is given below:  

precisionrecall

precisionrecall
precisionrecallF






2
),(1  .   (9) 

For different algorithms, their 
1F  measurements are determined and used to rank their 

performances. In Table V, the 
1F  measurements and the associated ranks are also given in terms of 

the four groups of evaluations, respectively. 

In Table V, the results from us are listed under the team „M‟, which can be further 

highlighted as follows. Among all 15 teams in TRECVID 2007, our proposed algorithm achieved 

the 5
th
 best overall performance, the 5

th
 best performance for gradual transition detection, the 4

th
 

best performance for gradual transition boundary frame accuracy, and the 6th best performance for 

abrupt cut detection. In addition, the runtime of the proposed algorithm and TRECVID 2007 

participants is listed in Table VI for comparisons. As indicated by the ratio of runtime to real-time 

video playing, our algorithm is four times faster than real-time video playing and there is only one 

system named “J” has its processing speed and overall performance superior to ours. However, our 

system generates better results than that of team “J” in at least three sequences including 

"BG_11362", "BG_35050" and "BG_36628" in terms of overall performance, cut detection as well 

as frame-based gradual transition detection, despite of those with better results over one single 

evaluation item. In addition, it is worth noting that the runtime of ours is based on an un-optimized 

MPEG decoder from Berkeley [29]. When a better decoder such as MDC [30] is utilized, the 

runtime becomes less than 1000 seconds, i.e. the fastest system in the group of results. This on one 

hand has proved that both the efficiency and effectiveness of decision trees and FSM in 
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determination of shot boundaries. On the other hand, it shows great potential to accurate locating 

the boundaries of gradual transitions using our straightforward decision rules.  

To further evaluate the performance of the proposed algorithm, we have tested it using the 

data from TRECVID 2006 and the results are reported in Table VII. Also, results from the best four 

teams are shown for comparisons. Due to complex editing effects, the overall performance is worse 

than that from TRECVID 2007. However, our approach has achieved the 2
nd

 best on cut detection, 

the 6
th
 best on gradual transition detection and the 4

th
 best on frame-based gradual transition 

detection. The overall performance of our system is the 5
th

 best in terms of F1 measurement, and the 

2
nd

 fastest in the whole group of evaluations. 

Although the performance on cut detection is overwhelmingly better than gradual 

transitions, the error in cut detection still matters due to the fact that cuts occupy more than 90% of 

shots in TRECVID 2007. As a result, small error rate in cut detection has inevitably led to 

degradation of the overall performance. Depending on the nature of the video sequence content, 

better results are achieved for some sequences than from others, such as poor results for the two 

sequences BG_36182 and BG_36628.  Further analysis reveals that the relative poor performance 

of the proposed algorithm is largely due to the missed type defined by TRECVID 2007 as “others”, 

which are neither standard dissolve gradual transition nor abrupt cuts. Yet in our proposed 

algorithm, no techniques have been designed to target such special type of shot boundaries. Figure-

6 illustrates two examples of such “others”, from which it is seen that part-(a) is very close to a cut 

since only a small part of the picture goes through the dissolve transition inside the second frame 

and then the third frame is entirely different. In part-(b) of Figure-6, the transition part is again very 

small, only involving a few white letters inside the middle of the picture. As the proposed algorithm 

is designed primarily for those standard cuts and dissolves, the performance on these kinds of 

“others” are poor and more dedicated detection techniques are required in the future work. 

According to the report of TRECVID 2007, the majority of other systems adopt machine 

learning approaches for shot boundary detection, where support vector machine (SVM) is one 
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typically used technique [13]. The results here show that modelling of content-aware indicators for 

decision making can achieve comparative performance to those machine learning techniques. 

However, the specific process and the feature set in our algorithm are much simpler than those of 

machine learning approaches, such as the graph partition model used in [13]. As illustrated in 

Table-I, such empirical study only needs to determine the ranges of feature values, where the 

principle is very clear that above LT  , the corresponding frame difference indicator should enable 

majority cuts to be detected, and above HT , few false positives should exist. Following that, 

content-aware indicators such as relative change ratios are calculated to provide fine-tuned scopes 

for accurate decision making under complicated contexts. Similar to machine learning approaches, 

the proposed algorithm is also sensitive to training video sequences in special cases, such as a cut 

with very small content difference not occurred inside the training sequences. However, such 

special cases are rare in practice, which often require dedicated attention as illustrated in Figure-6. 

Under this circumstance, machine learning approaches will have no exception simply because 

learning from what happened inside the training video sequences is primarily required for all 

machine learning approaches to detect shot transitions. To this end, the robustness of the proposed 

algorithm remains the same as those machine learning approaches.  

6   Conclusions 

In this paper, we described a content-aware algorithm with multiple content difference indicators 

for shot cut detection. While this area is well researched for the past decades, our proposed 

algorithm has made three contributions. Firstly, we proposed a content-aware approach with 

multiple content difference indicators to deal with cuts and dissolves in practical cases, which are 

much more complicated than theoretically described or expected. The application of each individual 

threshold is controlled by multiple context indicators extracted in compressed domain. Secondly, 

the entire detection process is organized by decision trees as well as FSM to achieve operation 

efficiency and effectiveness in its performances. Thirdly, a coarse-to-fine procedure is introduced 
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with pre-processing and post-processing modules to reduce the computation cost and increasing its 

detection reliability. Extensive experiments demonstrate that the proposed algorithm achieves 

promising results and performances for a well-known but complicated test set (TRECVID 2007), 

where video sequences present a wide range of cuts and gradual transitions under various 

circumstances and mixed scene changes. This has demonstrated that rule based decision making 

with modelling of content-aware indicators can generate comparative results to those using machine 

learning approaches, using a simpler feature set and straightforward design strategies, which 

provides a good alternative for this topic especially when sufficient representative training samples 

are hard to attain.    

Finally, the proposed algorithm, however, also presents certain level of weakness in dealing 

with special types of shot cuts defined as “others” in TRECVID 2007 event. These include part of 

the picture incurs gradual transition, picture-in-picture transition, etc, which is the major reason why 

our submission was ranked lower than expected. How to accurate modelling such transitions will be 

the focus for our further investigation. 
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         Table-I Summary of the value ranges in terms of several inter-frame difference indicators 

Content/Values nD (luminance) 
n  (edge) nM  (motion) n ( inter-frame difference  

of luminance and colour) 

Lower bound  LT  0.027 0.02 0.06 0.14 

Higher bound   HT  0.09 - 0.2 0.3 

 

     Table-II FSM states description 

FSM States Descriptions 

S1 Initial state 

S2 Detection state for the beginning frame of a possible dissolve candidate 

S3 Detection state for the ending frame of a possible dissolve candidate 

S4 Verification state 

 

      Table-III Definition of conditions for inter-state transition in FSM 

Conditions Definitions Comments 

C1 00 1  nn errerr  A candidate dissolve frame is found at the n
th
 frame, and set nB  ; 

C2 00 1  nn errerr  The coming dissolve frame can be expanded, update nE  . 

C3 00 1  nn errerr  Find a non-dissolve frame as potential ending of transition, nE  ; 

C4 max1 LBEL   
The detected candidate is too long to absorb the coming dissolve 

frame   

C5 ],1[),0( gapkE Lkerr    The number of non-dissolve frames is larger than the defined gap; 

C6 TerrLLL
E

Bi i   

1

min  
Validate the candidate via comparing its length and average motion 

prediction error respectively against two thresholds minL  and T . 

 

              Table-IV Description of the video sequence in the test set 

Video name Number of frames Abrupt cut count Gradual transition count Sum of all shots 

BG_2408 35892 103 18 121 
BG_9401 50049 89 3 92 
BG_11362 16416 104 4 108 

BG_14213 83115 107 60 167 
BG_34901 34389 225 15 240 
BG_35050 36999 100 2 102 
BG_35187 29025 135 23 158 
BG_36028 44991 87 0 87 
BG_36182 29610 96 13 109 
BG_36506 15210 77 6 83 
BG_36537 50004 259 30 289 
BG_36628 56564 196 6 202 

BG_37359 28908 165 5 170 
BG_37417 23004 84 4 88 
BG_37822 21960 120 9 129 
BG_37879 29019 95 4 99 
BG_38150 52650 215 4 219 

In total 637805 2257 206 2463 
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Table-V. Comparison of average performance for all teams in TRECVID 2007, and the team „M‟ refers to our results. 

Team 
Overall Cut Gradual transition 

Gradual transition 

Frame-based 

F1 (rank) Recall Precision F1 (rank) Recall Precision F1 (rank) Recall Precision F1 (rank) Recall Precision 

A 0.834 (9) 0.7435 0.9505 0.872 (10) 0.8035 0.9540 0.156 (12) 0.0900 0.6785 0.672 (8) 0.5365 0.9315 

B 0.946 (1) 0.9419 0.9506 0.968 (2) 0.9718 0.9639 0.660 (1) 0.6142 0.7579 0.818 (1) 0.7312 0.9279 

C 0.865 (7) 0.9220 0.8210 0.960 (3) 0.9614 0.9591 0.272 (8) 0.4909 0.2555 0.718 (7) 0.6628 0.7927 

D 0.897 (4) 0.8879 0.9120 0.937 (5) 0.9689 0.9120 0.000 (14) 0.0000 0.0000 0.000 (14) 0.0000 0.0000 

E 0.781 (10) 0.8360 0.7392 0.843 (11) 0.8840 0.8094 0.229 (10) 0.3124 0.2455 0.640 (10) 0.5811 0.8105 

F 0.628 (15) 0.8801 0.4995 0.816 (13) 0.9064 0.7429 0.146 (13) 0.5923 0.0937 0.597 (11) 0.6540 0.6056 

G 0.845 (8) 0.8797 0.8157 0.927 (8) 0.9201 0.9346 0.282 (7) 0.4378 0.2233 0.659 (9) 0.5390 0.8510 

H 0.750 (11) 0.7514 0.8646 0.767 (14) 0.7663 0.8885 0.577 (4) 0.5873 0.6458 0.748 (5) 0.6584 0.8687 

I 0.885 (6) 0.9018 0.8726 0.931 (7) 0.9288 0.9337 0.453 (6) 0.5922 0.4008 0.534 (12) 0.4010 0.8013 

J 0.915 (3) 0.9036 0.9284 0.946 (4) 0.9304 0.9620 0.604 (3) 0.6118 0.6298 0.772 (3) 0.6824 0.8894 

K 0.941 (2) 0.9509 0.9328 0.973 (1) 0.9692 0.9763 0.658 (2) 0.7504 0.6036 0.806 (2) 0.7755 0.8382 

L 0.723 (13) 0.9005 0.6171 0.919 (9) 0.9276 0.9154 0.177 (11) 0.6014 0.1332 0.738 (6) 0.7490 0.7292 

M 0.888 (5) 0.8890 0.8870 0.936 (6) 0.9200 0.9520 0.460 (5) 0.5530 0.3940 0.753 (4) 0.7920 0.7180 

N 0.726 (12) 0.9525 0.6080 0.824 (12) 0.9778 0.7248 0.270 (9) 0.6747 0.1972 0.410 (13) 0.2649 0.9096 

O 0.677 (14) 0.7108 0.7514 0.707 (15) 0.7758 0.7514 0.000 (14) 0.0000 0.0000 0.000 (14) 0.0000 0.0000 

 

 

 
 

                                  Table-VI. Average runtime of participants in TRECVID 2007, and the  

                                                    total time for video play is 25512.2s. 
Team Runtime (seconds) Ratio to video play time Rank 

A 10586.3 0.4150 9 

B 7325.5 0.2871 8 

C 4157.9 0.1630 3 

D 17540 0.6875 12 

E 611200.2 23.9572 15 

F 15637.9 0.6130 11 

G 3615.1 0.1417 2 

H 96948.8 3.8001 14 

I 5517.9 0.2163 6 

J 1686.5 0.0661 1 

K 12974.7 0.5086 10 

L 7319.7 0.2869 7 

M 5357.6 0.2100 5 

N 4223.1 0.1656 4 

O 42397.3 1.6618 13 

 

 

 

 

Table-VII. Comparison of average performance of our system and results from the best four teams in TRECVID 2006. 

Team 
Overall Cut Gradual transition 

Gradual transition 

Frame-based 

F1 (rank) Recall Precision F1 (rank) Recall Precision F1(rank)  Recall Precision F1(rank)  Recall Precision 

Ref-1 0.835 (1) 0.851 0.821 0.905 (1) 0.942 0.871 0.768 (2) 0.764 0.773 0.855 (2) 0.813 0.902 

Ref-2 0.830 (2) 0.880 0.786 0.871 (3) 0.925 0.823 0.792 (1) 0.837 0.751 0.899 (1) 0.915 0.883 

Ref-3 0.702 (3) 0.831 0.607 0.743 (5) 0.857 0.656 0.662 (3) 0.807 0.561 0.814 (3) 0.797 0.831 

Ref-4 0.690 (4) 0.718 0.664 0.848 (4) 0.911 0.793 0.538 (4) 0.535 0.541 0.551 (5) 0.414 0.823 

Our 0.672 (5) 0.733 0.620 0.886 (2) 0.913 0.861 0.462 (6) 0.562 0.392 0.754 (4) 0.788 0.722 
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                                         Figure-1 Decision tree for initial shot detection 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Figure-2 Decision tree for removal of false positives in cut detection.  

 

 

 

Features 

Non-cut 

No 

Cut candidates in 

nFeatures 

Non-cut 

No 

Yes 

No 

Non-cut 

Yes 

Yes 

Cut validated. 

Yes 

Non-cut 

No 

 
Hnn TMC   ||31  

 
Lnn TMC   ||21  

  n
ˆ  

Cut Hn TD   
Yes 

No 

Non-cut 
Yes 

Yes 

Non-cut 

candidate 

that needs 

validation 
No 

No 

Cut candidate that  

needs further validation 

Ln TD   

No relative change 

ratios larger than   

   nHn T ˆ
1  



 26 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                   Figure-3 Decision tree for removal of false negatives 

 

 

 

 

 

                        

 

Figure-4. Plots of feature measurements vs. frames in terms of IVC (top) and motion compensation error (bottom), 

where red curves indicates ground truth of dissolve effects and blue ones the corresponding features.  
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                                 Figure-5 Structure of FSM for dissolve detection 

 

 

 

 

 
 

 
 

Figure-6 Illustration two examples of “others” which are not modelled in our system. 
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