Skip to main content
Log in

Human gait recognition using extraction and fusion of global motion features

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

This paper proposes a novel computer vision approach that processes video sequences of people walking and then recognises those people by their gait. Human motion carries different information that can be analysed in various ways. The skeleton carries motion information about human joints, and the silhouette carries information about boundary motion of the human body. Moreover, binary and gray-level images contain different information about human movements. This work proposes to recover these different kinds of information to interpret the global motion of the human body based on four different segmented image models, using a fusion model to improve classification. Our proposed method considers the set of the segmented frames of each individual as a distinct class and each frame as an object of this class. The methodology applies background extraction using the Gaussian Mixture Model (GMM), a scale reduction based on the Wavelet Transform (WT) and feature extraction by Principal Component Analysis (PCA). We propose four new schemas for motion information capture: the Silhouette-Gray-Wavelet model (SGW) captures motion based on grey level variations; the Silhouette-Binary-Wavelet model (SBW) captures motion based on binary information; the Silhouette–Edge-Binary model (SEW) captures motion based on edge information and the Silhouette Skeleton Wavelet model (SSW) captures motion based on skeleton movement. The classification rates obtained separately from these four different models are then merged using a new proposed fusion technique. The results suggest excellent performance in terms of recognising people by their gait.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. BenAbdelkader C, Cutler R, Davis L (2002) Motion-based recognition of people in Eingenspace space. Proceedings of fifth IEEE International Conference on Automatic Face Gesture Recognition. doi:10.1109/AFGR.2002.1004165

    Google Scholar 

  2. Bobick AF, Davis JW (2001) The recognition of human movement using temporal templates. IEEE Transactions on Pattern Analysis and Machine Intelligence. doi:10.1109/34.910878

    MATH  Google Scholar 

  3. Boulgouris NV, Chi ZX (2007) Gait recognition using radon transform and linear discriminant analysis. IEEE Transactions on Image Processing. doi:10.1109/ICIP.2006.313058

    MathSciNet  MATH  Google Scholar 

  4. Burrus S, Gopinath RA, Guo H (1998) Introduction to wavelets and wavelet transform. A Primer. Houston, Texas

  5. Chellappa R, RoyChowdhury A, Sundaresan A (2003) A hidden Markov model based framework for recognition of human from gait sequences. IEEE International Conference Image Processing. doi:10.1109/ICIP.2003.1247165

    Google Scholar 

  6. Collins RT, Gross R, Shi J (2002) Silhouette-based human identification from body shape and gait. Proc Int’l Conf Automatic Face and Gesture Recognition. doi:10.1109/AFGR.2002.1004181

    Google Scholar 

  7. Data Base, CASIA Gait. www.sinobiometrics.com. Acessed 29 July 2010

  8. Havasi L, Szlavik Z, Sziranyi T (2007) Detection of gait characteristics for scene registration in video surveillance system. IEEE Transactions on Imagem Processing. doi:10.1109/TIP.2006.888339

    MathSciNet  Google Scholar 

  9. Hong L, Jain A, Pankanti S (1999) Can multibiometrics improve performance? Proc AutoID’99. http://www.cse.msu.edu/publications/tech/TR/. Acessed 29 July 2010

  10. Hong S, Lee H, Nizami IF et al (2007) A new gait representation for human identification: mass vector. Second IEEE Conference on ICIEA Applications. doi:10.1109/ICIEA.2007.4318491

    Google Scholar 

  11. Kale A, Cuntor N, Yegnanarayana B et al (2003) Gait analysis for Human Identification. AVBPA. http://www.cfar.umd.edu/~kale/avbpa.pdf. Acessed 29 July 2010

  12. KawTraKullPong P, Bowden R (2001) An improved adaptative background mixture model for real-time tracking with shadow detection. In In Proc. 2nd European Workshop on Advanced Video Based Surveillance. http://personal.ee.surrey.ac.uk/Personal/R.Bowden/. Acessed 29 July 2010

  13. Lam L, Lee S-W, Suen CY (1992) Thinning methodologies—a comprehensive survey. IEEE Transactions on Pattern Analysis and Machine Intelligence. doi:10.1109/34.161346

  14. Lee L, Grimson WEL (2002) Gait analysis for recognition and classification. IEEE Conference on Face and Gesture Recognition. doi:10.1109/AFGR.2002.1004148

    Google Scholar 

  15. Library, Open Source Computer Vision. http://opencvlibrary.sourceforge.net. Acessed 29 July 2010

  16. Liu Z, Sarkar S (2006) Improved gait recognition by gait dynamics normalization. IEEE Transactions on Pattern Analysis and machine Intelligence. doi:10.1109/ICBBE.2007.142

    Google Scholar 

  17. Liu J, Zheng N (2007) Gait history image: a novel temporal template fo gait recognition. IEEE International Conference on Multimedia and Expo. doi:10.1109/ICME.2007.4284737

    Google Scholar 

  18. Murase H, Sakai R (1996) Moving object recognition in eingenspace recognition. Gait analysis and lip reading. Pattern Recognition Letters. doi:10.1016/0167-8655(95)00109-3

    Google Scholar 

  19. Niyogi SA, Adelson EH (1994) Analysing and recognizing walking figures in XYT. Proceedings CVPR. doi:10.1109/CVPR.1994.323868

    MATH  Google Scholar 

  20. Philips PJ, Moon H, Rizvi SA et al (2000) The FERET evaluation methodology for face-recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence. doi:10.1109/34.879790

    Google Scholar 

  21. Phillips PJ, Sarkar S, Robledo I et al (2002) Baseline results for challenge problem of human id using gait analysis. Proc IEEE International Conference on Automatic Face and Gesture Recognition. doi:10.1109/AFGR.2002.1004145

    Google Scholar 

  22. Sarkar S, Phillips PJ, Liu Z et al (2005) The human Id gait challenge problem: data sets. Performance and analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence. doi:10.1109/TPAMI.2005.39

    Google Scholar 

  23. Staufer C, Grimson WEL (1999) Adaptive background mixture models for real time tracking. IEEE Computer Society Conf on Computer Vision and Pattern Recognition. doi:10.1109/CVPR.1999.784637

    Google Scholar 

  24. Turk MA, Pentland AP (1991) Face recognition using eigenfaces. IEEE Computer Society Conference on CVPR’91. doi:10.1109/CVPR.1991.139758

    Google Scholar 

  25. Wang L, Tan T, Ning H, Hu W (2003) Silhouette analysis-based gait recognition for human identification. IEEE Transactions on Pattern Analysis and Machine Intelligence. doi:10.1109/TPAMI.2003.1251144

    Google Scholar 

  26. Winter D (1991) The Biomechanics and Motor Control of Human Gait: Normal, Elderly and Pathlogical. Walterloo Press, USA

    Google Scholar 

  27. Yang J, Wu X, Peng Z (2006) Gait recognition based on difference motion slice. ICSP Proceedings. doi:10.1109/ICOSP.2006.345931

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the São Paulo State Foundation for Supporting Research (FAPESP) for their financial support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adilson Gonzaga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arantes, M., Gonzaga, A. Human gait recognition using extraction and fusion of global motion features. Multimed Tools Appl 55, 655–675 (2011). https://doi.org/10.1007/s11042-010-0587-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-010-0587-y

Keywords

Navigation