Skip to main content
Log in

Efficient compression and network adaptive video coding for distributed video surveillance

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

The availability of cheap network based video cameras and the prevalence of wireless networks has lead to a major thrust towards deployment of large scale Distributed Video Surveillance (DVS) systems. This has opened up an important area of research to deal with the issues involved in DVS system for efficient collection and transmission of large scale video streams from the cameras at the guarded sites, to the end users in possibly constrained network conditions. In this paper, we propose a framework based on content-based video classification and scalable compression scheme to provide a robust bandwidth efficient video transmission for DVS. The scheme builds on a Discrete Wavelet Transform (DWT) based Color-Set Partitioning for Hierarchical Trees (CSPIHT) coding to obtain a scalable bitstream. Wavelet domain segmentation and compression assists in development of a DVS architecture. The architecture includes a novel module for dynamic allocation of Network bandwidth based on the current available resources and constraints. Different frame constituents are optimally coded based on their relative significance, perceptual quality, and available estimate of network bandwidth. Experimental result over different video sequences and simulations for Network conditions demonstrate the efficient performance of the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Choi SJ, Woods J (1999) Motion-compensated 3-d subband coding of video. IEEE Trans Image Process 8(2):155–167. doi:10.1109/83.743851

    Article  Google Scholar 

  2. Christopoulos C, Skodras A, Ebrahimi T (2000) The JPEG2000 still image coding system: an overview. IEEE Trans Consum Electron 46(4):1103–1127

    Article  Google Scholar 

  3. Delp E, Salama P, Asbun E, Saenz N, Shen K (1999) Rate scalable image and video compression techniques. In: 1999 42nd midwest symposium on circuits and systems, vol 2, pp 635–638. doi:10.1109/MWSCAS.1999.867718

  4. Doulamis A, Tziritas G (2006) Content-based video adaptation in low/variable bandwidth communication networks using adaptable neural network structures. In: International joint conference on neural networks (IJCNN ’06), pp 4037–4044

  5. Huang JC, Hsieh WS (2003) Wavelet-based moving object segmentation. Electron Lett 39(19):1380–1382

    Article  Google Scholar 

  6. Javed O, Rasheed Z, Alatas O, Shah M (2003) KNIGHT: a real-time surveillance system for multiple overlapping and non-overlapping cameras. In: Proceedings of the IEEE international conference on multimedia and expo, ICME’03, pp 649–652

  7. Kim C, Hwang JN (2002) Object-based video abstraction for video surveillance systems. IEEE Trans Circuits Syst Video Technol 12(12):1128–1138

    Article  Google Scholar 

  8. Leo M, Spagnolo P, D’Orazio T, Distante A (2004) Human activity recognition in archaeological sites by hidden markov models. PCM 2:1019–1026

    Google Scholar 

  9. Liu Y, Ngan KN (2007) Fast multiresolution motion estimation algorithms for wavelet-based scalable video coding. ACM Image Commun 22(5):448–465

    Google Scholar 

  10. Mahonen P (1999) Integration of wireless networks and AVS: advanced video based surveillance systems. Kluwer Academic Publishers

  11. Mitchell J, Pennebaker W, Fogg C, Legall D (1996) MPEG video compression standard. Chapman & Hall, London, UK

    Google Scholar 

  12. Niu W, Jiao L, Han D, Wang Y (2003) Real-time multi-person tracking in video surveillance. In: Proceedings of the pacific rim multimedia conference, vol 2, pp 1144–1148

  13. Pande A, Zambreno J (2011) Poly-DWT: polymorphic wavelet hardware support for dynamic image compression. ACM Trans Embed Comput Syst, in press

  14. Pavlidis I, VMorellas, Tsiamyrtzis P, Harp S (2001) Urban surveillance systems: from the laboratory to the commercial world. In: Proceedings of IEEE, vol 89(10)

  15. Qiu R, Yu W (2001) An efficient quality scalable motion-jpeg2000 transmission scheme. Tech Rep WUCS-01-37, Department of Computer Science, Washington University in St Louis. citeseer.ist.psu.edu/qiu01efficient.html

  16. Richardson I (2003) H.264 and MPEG-4 video compression: video coding for next-generation multimedia. Wiley, New York

    Book  Google Scholar 

  17. Richardson I (2003) H.264 and MPEG-4 video compression: video coding for next generation multimedia. Wiley, New York

    Book  Google Scholar 

  18. Sacchi C, Regazzoni CS (1999) Multimedia communication techniques for remote cable based video-surveillance systems. In: International conference on image analysis and processing, pp 1100–1103

  19. Said A, Pearlman W (1996) An image multiresolution representation for lossless and lossy image compression. IEEE Trans Image Process 5:1303–1310

    Article  Google Scholar 

  20. Schwarz H, Marpe D, Wiegand T (Sept. 2007) Overview of the scalable video coding extension of the h.264/avc standard. IEEE Trans Circuits Syst Video Technol 17(9):1103–1120. doi:10.1109/TCSVT.2007.905532

    Article  Google Scholar 

  21. Shapiro J (1993) Embedded image coding using zerotrees of wavelet coefficients. IEEE Trans Signal Process 41(12):3445–3462

    Article  MATH  Google Scholar 

  22. Shapiro JM (1993) Embedded image coding using zerotrees of wavelet coefficients. IEEE Trans Signal Process 41(12):3445–3462

    Article  MATH  Google Scholar 

  23. Stauffer C, Grimson W (1999) Adaptive background mixture models for real-time tracking. In: Proceedings IEEE conf computer vision and pattern recognition, vol 2, pp 246–252

  24. Taubman D (2000) High performance scalable image compression with EBCOT. IEEE Trans Image Process 9(7):1158–1170

    Article  Google Scholar 

  25. Toreyina BU, Cetina AE, Aksay A, Akhan MB (2004) Moving object detection in wavelet compressed video. Signal Process Image Commun 20:255–264

    Article  Google Scholar 

  26. Vetro A, Haga T, Sumi K, Sun H (2003) Object-based coding for long-term archive of surveillance video. In: Proceedings of international conference on multimedia & expo (ICME), vol 2, pp 417–420

  27. Wiegand T, Sullivan GJ, Bjntegaard G, Luthra A (2003) Overview of the H.264/AVC video coding standard. IEEE Trans Circuits Syst Video Technol 13(7):560–576

    Article  Google Scholar 

  28. Yang W, Lu Y, Wu F, Cai J, Ngan KN, Li S (2006) 4-d wavelet-based multiview video coding. IEEE Trans Circuits Syst Video Technol 16(11):1385–1396. doi:10.1109/TCSVT.2006.884571

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Praveen Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, P., Pande, A. & Mittal, A. Efficient compression and network adaptive video coding for distributed video surveillance. Multimed Tools Appl 56, 365–384 (2012). https://doi.org/10.1007/s11042-010-0672-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-010-0672-2

Keywords

Navigation