Skip to main content
Log in

An efficient joint implementation of three stages for fast computation of color space conversation in image coding/decoding

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

This paper proposes an efficient joint implementation algorithm for computing color space conversion, quantization and discrete cosine transform (DCT) in an image coder/decoder. By combining the three stages, the proposed algorithm reduces the operation amount of computing color space conversion considerably. In the case of color sampling 4:4:4, the proposed algorithm reduces the multiplication amount by 40% and the addition amount by 42% for the conversion from RGB to YCbCr in an image coder, and reduces the multiplication amount by 60% and the addition amount by 42% for the conversion from YCbCr to RGB in an image decoder. In the cases of down-sampling 4:2:2 and 4:1:1, there are the similar results. The existing fast methods in the literatures can still be applied together with this proposed algorithm into the implementation of the international image coding standards which use the transform coding technology, such as JPEG, MPEG and H.26X, and raises the image coding/decoding speed efficiently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Arai Y, Agui T, Nakajima M (1988) A Fast DCT-SQ Scheme for Images. Transactions of Institute of Electronics, Information and Communication Engineers 71(11):1095–1097

    Google Scholar 

  2. Bartkowiak M (2001) Optimizations of Color Transformation for Real Time Video Decoding. EURASIP Conference on Digital Signal Processing for Multimedia Communications and Services (ECMCS 2001), Budapest

  3. Bensaali F, Amira A (2004) Design and Implementation of Efficient Architectures for Color Space Conversion. International Journal on Graphics, Vision and Image Processing 5(1):37–47

    Google Scholar 

  4. Bensaali F, Amira A, Bouridane A (2004) An Efficient Architecture for Color Space Conversion Using Distributed Arithmetic. Proceedings of the IEEE International Symposium on Circuits and Systems, Vancouver (Canada), pp II-265-8, doi:10.1109/ISCAS.2004.1329259

  5. Bhaskaran V, Konstantinides K (2003) Image and Video Compression Standards: Algorithms and Architectures. Kluwer Academic Publishers, Norwell

    Google Scholar 

  6. Chen WH, Smith CH et al (1977) A fast computational algorithm for the discrete cosine transform. IEEE Trans on Communications 25(9):1004–1009. doi:10.1109/TCOM.1977.1093941

    Article  MATH  Google Scholar 

  7. Docef A, Kossentini F, Khanh NP, Ismaeil IR (2002) The quantized DCT and its application to DCT-based video coding. IEEE Trans Image Process 11(3):177–187. doi:10.1109/83.988952

    Article  Google Scholar 

  8. Fan CP (2006) Fast 2-dimensional 4×4 forward integer transform implementation for H.264/AVC. IEEE Trans on circuits and systems II: Express Briefs 53(3):174–177

    Article  Google Scholar 

  9. Feig E, Winograd S (1992) Fast algorithms for the discrete cosine transform. IEEE Trans on Signal Processing 40(9):2174–2193. doi:10.1109/78.157218

    Article  MATH  Google Scholar 

  10. Ji XH, Zhang CM, Wang K (2009) A Fast Two-Dimension 4×4 Inverse Integer Transform Algorithm for Real-time H.264 Decoder. International Journal of Innovative Computing Information and Control 5(3):689–696

    Google Scholar 

  11. Ji XH, Zhang CM, Wang JY, Boey SH (2009) Fast 2-D 8 × 8 discrete cosine transform algorithm for image coding. Science in China Series F: Information Sciences 52(2):215–225

    Article  MATH  Google Scholar 

  12. Khanh NP, Docef A, Kossentini F (1999) Quantized discrete cosine transform: a combination of DCT and scalar quantization. IEEE International Conference on Acoustics, Speech, and Signal Processing 6:3197–3200. doi:10.1109/ICASSP.1999.757521

    Google Scholar 

  13. Kusuma ED, Widodo TS (2010) FPGA implementation of pipelined 2D-DCT and quantization architecture for JPEG image compression. 2010 International Symposium on Information Technology (ITSim), Kuala Lumpur, pp 1–6. doi:10.1109/ITSIM.2010.5561411

  14. Latha P (2005) Color Space Converter: Y’CrCb to R′G′B′. Xilinx Aplication Note. XAPP283 (v1.3.1)

  15. Lee BG (1984) A new algorithm to compute the discrete cosine transform. IEEE Trans on Acoustic, Speech, Signal Processing 32(12):1243–1245. doi:10.1109/TASSP.1984.1164443

    MATH  Google Scholar 

  16. Lengwehasatit K, Ortega A (2004) Scalable variable complexity approximate forward DCT. IEEE Trans on Circuits and Systems for Video Technology 14(11):1236–1248. doi:10.1109/TCSVT.2004.835151

    Article  Google Scholar 

  17. Leoffler C, Ligtenberg A, Moschytz GS (1989) Practical fast 1D DCT algorithms with 11 mutiplications. In Proc IEEE ICASSP 2:988–991. doi:10.1109/ICASSP.1989.266596

    Google Scholar 

  18. Liang J (2001) Fast Multiplierless Approximations of the DCT With the Lifting Scheme. IEEE Trans on Signal Processing 49(12):3032–3044. doi:10.1109/78.969511

    Article  Google Scholar 

  19. Malvar HS, Hallapuro A, Karczewicz M, Kerofsky L (2003) Low-complexity transform and quantization in H.264/AVC. IEEE Trans on Circuits and Systems for Video Technology 13(7):598–603

    Article  Google Scholar 

  20. Mihai S, Stamatis V et al (2002) Y’UV-to-R’G’B’ Color Space Conversion on FPGA-augmented TriMedia-32 Processor. Proceeding of the Workshop on Circuits. Systems and Signal Processing, ISBN 90-73461-33-2, Veldhoven, Netherlands, pp 465–470

  21. Mihai S, Stamatis V, et al (2003) Color Space Conversion for MPEG decoding on FPGA-augmented TriMedia Processor. IEEE 14th Intl. Conf. on Application-specific Systems, Architectures, and Processors, Hague, Netherlands, pp 250–259. doi:10.1109/ASAP.2003.1212848

  22. Mitchell JL, Pennebake WB et al (1997) MPEG Video Compression Standard. Kluwer Academic Publishers, Norwell

    Google Scholar 

  23. Richardson IEG (2003) H.264 and MPEG-4 Video Compression—Video Coding for Next-Generation Multimedia. Wiley, New York

    Book  Google Scholar 

  24. Xiang XX, Wang Y, Xiang Yangxia et al (2010) Efficient Fast Algorithm of DCT for H.264/AVC. 2010 Third International Conference on Intelligent Networks and Intelligent Systems, Shenyang, pp 76 – 79. doi:10.1109/ICINIS.2010.28

  25. Xue YL, Liu K et al (2002) Optimization for a Parallel JPEG Algorithm. Acta Electronica Sinica 32(2):153–155

    Google Scholar 

  26. Yang Y, Peng YH, Liu ZG (2007) A Fast Algorithm for YCbCr to RGB Conversion. IEEE Transactions on Consumer Electronics 53(4):1490–1493

    Article  Google Scholar 

Download references

Acknowledgment

This research is supported by the national natural science foundation of China (Key Program No.60933008 and No.61073162) and the Shandong natural science foundation of China (No.ZR2009GL013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuhua Ji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ji, X., Zhang, C. & Zhang, X. An efficient joint implementation of three stages for fast computation of color space conversation in image coding/decoding. Multimed Tools Appl 62, 879–893 (2013). https://doi.org/10.1007/s11042-011-0881-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-011-0881-3

Keywords

Navigation