Skip to main content
Log in

Fast moving object detection with non-stationary background

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

The detection of moving objects under a free-moving camera is a difficult problem because the camera and object motions are mixed together and the objects are often detected into the separated components. To tackle this problem, we propose a fast moving object detection method using optical flow clustering and Delaunay triangulation as follows. First, we extract the corner feature points using Harris corner detector and compute optical flow vectors at the extracted corner feature points. Second, we cluster the optical flow vectors using K-means clustering method and reject the outlier feature points using Random Sample Consensus algorithm. Third, we classify each cluster into the camera and object motion using its scatteredness of optical flow vectors. Fourth, we compensate the camera motion using the multi-resolution block-based motion propagation method and detect the objects using the background subtraction between the previous frame and the motion compensated current frame. Finally, we merge the separately detected objects using Delaunay triangulation. The experimental results using Carnegie Mellon University database show that the proposed moving object detection method outperforms the existing other methods in terms of detection accuracy and processing time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bajpai N (2010) Business statistics. Pearson

  2. Barnich O, Droogenbroeck MV (2009) VIBE: a powerful random technique to estimate the background in video sequences. In: Proc. IEEE ICASSP 2009, pp 945–948

  3. Borshukov GD, Bozdagi G, Altunbasak Y, Tekalp AM (1997) Motion segmentation by multistage affine classification. IEEE Trans Image Process 6(11):1591–1594

    Article  Google Scholar 

  4. Bouguet JY (2000) Pyramidal implementation of the Lucas Kanade feature tracker description of the algorithm. OpenCV Documentation

  5. Chen M, Gonzalez S, Cao H, Zhang Y, Vuong S (2010) Enabling low bit-rate and reliable video surveillance over practical wireless sensor networks. J. Supercomput. doi:10.1007/s11227-010-0475-2

    Google Scholar 

  6. Duda RO, Hart PE, Stork DG (2001) Pattern classification. Wiley-Interscience 2001

  7. Fischler MA, Bolles RC (1981) Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun ACM 24(6):381–395

    Article  MathSciNet  Google Scholar 

  8. Guibas LJ, Knuth DE, Sharir M (1992) Randomized incremental construction of Delaunay and Voronoi diagrams. Algorithmica 7(4):381–413

    Article  MathSciNet  MATH  Google Scholar 

  9. Han B, Comaniciu D, Zhu Y, Davis LS (2008) Sequential kernel density approximation and its application to real-time visual tracking. IEEE Trans Pattern Anal Mach Intell 30(7):1186–1197

    Article  Google Scholar 

  10. Hayman E, Eklundh J (2003) Statistical background subtraction for a mobile observer. In: Proc. IEEE ICCV 2003, pp 67–74

  11. Jin Y, Tao L, Di H, Rao NI, Xu G (2008) Background modeling from a free-moving camera by multi-layer homography algorithm. In: Proc. IEEE ICIP 2008

  12. Ke Q, Kanade T (2001) A subspace approach to layer extraction. In: Proc. IEEE CVPR 2001

  13. Li L, Huang W, Gu IYH, Tian Q (2003) Foreground object detection from videos containing complex background. In: Proc. ACMMM 2003

  14. Maddalena L, Petrosino A (2008) A self-organizing approach to background subtraction for visual surveillance applications. IEEE Trans Image Process 17(7):1168–1177

    Article  MathSciNet  Google Scholar 

  15. Mittal A, Hunttenlocher D (2000) Scene modeling for wide area surveillance and image synthesis. In: Proc. IEEE CVPR 2000, pp 160–167

  16. Oliver NM, Rosario B, Pentland AP (2000) A Bayesian computer vision system for modeling human interactions. IEEE Trans Pattern Anal Mach Intell 22(8):831–843

    Article  Google Scholar 

  17. Ren X, Malik J (2007) Tracking as repeated figure/ground segmentation. In: Proc. IEEE CVPR 2007, pp 1–8

  18. Ren Y, Chua CS, Ho YK (2003) Statistical background modeling for non-stationary camera. Pattern Recogn 24(1–3):183–196

    MATH  Google Scholar 

  19. Ren X, Song J, Ying H, Zhu Y, Qiu X (2007) Robust nose detection and tracking using GentleBoost and improved Lucas–Kanade optical flow algorithms. In: Proc. IEEE ICIC 2007, pp 1240–1246

  20. Sand P, Teller S (2006) Particle video: long-range motion estimation using point trajectories. In: Proc. IEEE CVPR 2006, pp 2195–2202

  21. Schmid C, Mohr R, Bauckhage C (2000) Evaluation of interest point detectors. Int J Comput Vis 37(2):151–172

    Article  MATH  Google Scholar 

  22. Schoenemann T, Cremers D (2008) High resolution motion layer decomposition using dual-space graph cuts. In: Proc. IEEE CVPR 2008, pp 1–7

  23. Sheikh Y, Javed O, Kanade T (2009) Background subtraction for freely moving cameras. In: Proc. IEEE ICCV 2009, pp 1219–1225

  24. Shi J, Tomasi C (1994) Good features to track. In: Proc. IEEE CVPR 1994, pp 593–600

  25. Tao H, Sawhney HS, Kumar R (2002) Object tracking with bayesian estimation of dynamic layer representations. IEEE Trans Pattern Anal Mach Intell 24(1):75–89

    Article  Google Scholar 

  26. Uemura H, Ishikawa S, Mikolajczyk K (2008) Feature tracking and motion compensation for action recognition. In: Proc. BMVC 2008

  27. Xiao J, Shah M (2005) Motion layer extraction in the presence of occlusion using graph cuts. IEEE Trans Pattern Anal Mach Intell 27(10):1644–1659

    Article  Google Scholar 

  28. Zivkovic Z, Heijden F (2006) Efficient adaptive density estimation per image pixel for the task of background subtraction. Pattern Recogn Lett 27(7):773–780

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the MKE (The Ministry of Knowledge Economy), Korea,under the Core Technology Development for Breakthrough of Robot Vision Research support program supervised by the NIPA (National IT Industry Promotion Agency) (NIPA-2010-C7000-1001-0006). And this research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology (No. 2011-0027953).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daijin Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J., Wang, X., Wang, H. et al. Fast moving object detection with non-stationary background. Multimed Tools Appl 67, 311–335 (2013). https://doi.org/10.1007/s11042-012-1075-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-012-1075-3

Keywords

Navigation