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Abstract 

This paper presents a method for indexing activities of daily living in videos 

acquired from wearable cameras. It addresses the problematic of analyzing the 

complex multimedia data acquired from wearable devices, which has been 

recently a growing concern due to the increasing amount of this kind of 

multimedia data. In the context of dementia diagnosis by doctors, patient activities 

are recorded in the environment of their home using a lightweight wearable 

device, to be later visualized by the medical practitioners. The recording mode 

poses great challenges since the video data consists in a single sequence shot 

where strong motion and sharp lighting changes often appear. Because of the 

length of the recordings, tools for an efficient navigation in terms of activities of 

interest are crucial. Our work introduces a video structuring approach that 

combines automatic motion based segmentation of the video and activity 

recognition by a hierarchical two-level Hidden Markov Model. We define a multi-

modal description space over visual and audio features, including mid-level 

features such as motion, location, speech and noise detections. We show their 

complementarities globally as well as for specific activities. Experiments on real 

data obtained from the recording of several patients at home show the difficulty of 

the task and the promising results of the proposed approach. 

This is a pre-print version of the publication. The final publication is available at 
http://link.springer.com/article/10.1007/s11042-012-1117-x 
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1. Introduction 

a. General problematic for multimedia 

With the development and gain of popularity of new smaller, autonomous and 

capable wearable sensors, we have in the recent years seen a steep increase in the 

availability of large amounts of new types of data. One can first think on the 

general public side of User Generated Content [39] captured by smart-devices 

including camera, microphones, mobile phones and other embedded sensors. 

These advances have also enabled the development of original applications of 

multimedia methodologies to new fields, such as health with activity monitoring 

or memorial tools, sports with performance evaluation using wearable sensors, 

human-machines interfaces in unconstrained environments using voice or gesture 

recognition…  

Such new data is posing a great challenge to the multimedia community, being of 

poorer quality and containing less structured content than the majority of digital 

media documents. Tools and methodologies developed for the analysis of 

multimedia data have therefore to be adapted and validated specifically in order to 

be usable in these new applicative contexts. In this paper, we target activity 

detection using wearable audiovisual capture, and investigate the models, features, 

and modality fusion aspects required to apply indexing in such challenging real-

world conditions. 

b. Motivation 

i. Societal need for the diagnosis of dementia… 

The application which drives our research is the vast and urgent need for 

appropriate tools to address the issues raised by the rapid aging of the population 

of the planet. In particular, elderly people with strong cognitive impairments such 

as dementia cannot live independently, and the placement in nursing homes 

becomes unavoidable, with a high cost for the society. One of the major goals in 

medical research is the early diagnosis of dementia diseases. This would help 

establish appropriate care giving and postpone placement into specialized 

institutions, thus reducing the growing costs for the society.  
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According to results of medical research [1] the first decline in cognitive 

performances can appear as early as 12 years before the dementia phase and up to 

10 years before the individuals become slightly dependent in their Activities of 

Daily Living (ADLs). To detect the first signs a subject could show, and also to 

assess the progression of the disease with patients in Mild-Cognitive Impairment 

(MCI) or established dementia phases, an objective observation of various 

activities in an everyday life is required for the medical practitioners.  

ii. …requiring development of appropriate multimedia indexing 

tools 

This is why the observation with various types of sensors including video cameras 

is now entering in clinical practice [29]. The amount of generated video data is 

usually very large. Indeed, the observation with external cameras in smart homes 

can last for several hours [2]; the monitoring with wearable sensors can be shorter, 

but still not browsable by a medical practitioner in the short time allocated to the 

preparation of an appointment with a patient. Hence, the necessity of automatic 

recognition of activities of interest is obvious and requires the development of 

adequate multimedia indexing tools.  

In the literature, a large amount of research has been devoted to the recognition of 

human activities in video recorded with stationary video sensors installed in 

buildings, e.g. [3]. Some of them are specifically devoted to the elderly people for 

assessing through observation the degree of autonomy and signs of upcoming 

dementia [2]. Nevertheless, the “external observation” does not allow for a 

medical practitioner to observe the actions of the patient in a very detailed way, 

such as those related to the instrumental activities of daily living. To see how a 

person uses utensils and food when cooking or how he/she is knitting or washing 

dishes would require a very dense installation of various sensors at home for each 

observed patient. Equipping homes with many sensors is a heavy task, which is 

excessive in the context of a diagnosis, and may not always be well accepted by 

elderly persons. We are therefore developing an alternative approach, requiring a 

lighter setup, based on wearable cameras and microphones for activity analysis. 

During the last decade various attempts have been made to use a wearable video 

acquisition set-up for activity monitoring, which we will review in the related 

work section. As an example, the SenseCam device, which is worn by a person, 
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helps constituting a lifelog that can then be used to rememorize the events for a 

person with memory impairments [5] [41]. Such wearable video sensors provide 

an “egocentric” point of view [40], allowing for close-up observation of the 

activities of a person. They are thus also highly valuable when a fine grained 

observation of the instrumental activities is required.  

c. Contributions 

In this paper we develop the research we first proposed in [4] on activities 

recognition for the diagnosis and monitoring of dementia. The objective is the 

indexing of the instrumental activities in audiovisual data recorded with a camera 

worn by the patient using the paradigm of first-person sensing. We present the 

methods and algorithms developed for the multi-modal analysis of audio-visual 

data captured from such a wearable device. Key contributions include: 

- a hierarchical two level Hidden Markov Model (HMM) aimed at the detection of 

activities of daily living, which provides the fusion of multi-modal visual and 

audio features. These include both low-level descriptors and mid-level features, 

some of which have been designed for the type of data considered; we show the 

complementarities of the chosen features globally, and show how specific 

activities can gain from this; 

- a new method for partitioning the data stream into segments, which is designed 

for continuous video sequences such as those captured by a wearable camera; 

- experiments and evaluation on real-life data acquired on both volunteers and 

patients in the context of the analysis of their activities of daily living. 

The paper is organized as follows: in section 2 we review related research and 

methods. In section 3, we give the motivation for our application of audiovisual 

lifelogging for the analysis of activities of daily living and describe the 

architecture of the proposed approach. In section 4, we provide a detailed 

explanation of the hierarchical HMM. In section 5, we describe our method for 

partitioning the videos and in section 6 we present our strategy for the extraction 

of meaningful multimodal features which feed the HMM as observations. 

Experiments with various configurations of the model and description space are 

reported in section 7. Finally, we conclude and give perspectives of this work in 

section 8. 
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2. Related work 

a. Activity recognition in multimedia data 

The recognition of events in video has been mostly dedicated to human actions 

recognition from external cameras [43] with many applications for surveillance 

and security. This task has been well addressed in the literature, as reviewed 

in [44, 45]. Tests on standard benchmark databases show almost perfect 

results [46]. However, the task on these benchmarks is rather simplistic as there is 

only one low semantic activity in each video which is centered on a single person. 

Moreover, the audiovisual stream is not fully considered as most of the time only 

the visual cues are used for the recognition [45]. 

In more recent works, the video has been considered as a complex multimedia 

source. Indeed, in addition to the traditional analysis of the visual content, the 

audio and motion analysis has gained attention in the last years. Thus the 

problematic of fusion from multiple sources has been addressed [47, 48, 49]. The 

analysis is often performed on pre-segmented data, i.e. shots in edited videos, 

where the event of interest has only to be recognized. The application on more 

generic data imposes methods than can simultaneously segment and recognize 

from the multimedia stream. 

b. Simultaneous recognition and segmentation on standard 
multimedia data 

The simultaneous segmentation and recognition of videos have been efficiently 

performed through the Hidden Markov Models formalism. The Hidden Markov 

Model (HMM) is a statistical model which was first introduced in [8] where its 

application to speech recognition was presented. The applications of HMMs to 

video have been first designed for low-level temporal structuring like the method 

for video segmentation using image, audio and motion content presented in [9], 

where the HMM states represent the camera motion and the transitions between 

shots. The richness of application contexts and constraints imposed in various 

spatio-temporal scenarios yielded a wide range of HMMs. Amongst the variety of 

HMMs, hierarchical and segmental HMMs turned to be the most popular for 

modeling activities in video streams. 
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With regards to the complexity and inherent hierarchical structure in video scenes 

coming from numerous application domains the classical “flat” HMM is limited. 

Indeed the structure of video scenes in e.g. sports video can be mapped to more 

than one HMM. Thus, in tennis videos [10] one HMM can describe a match as a 

set of “sets”, each set can be represented as a set of “games” and each game can 

be represented as set of “points” etc., up to an elementary events such as “rally”, 

“first missed serve”. A vertical link of hierarchy exists between states of the upper 

level HMM and the lower-level HMMs. This can be represented by the 

Hierarchical HMM (HHMM) modeling both the hierarchy of events (states) and 

transitions between them. Usually [14] the hierarchical structure is defined using 

the bottom-level states as emitting states (where the observation distribution has 

to be learnt) and high-level states as “internal” states to model the structure of the 

events. A two-level approach was proposed in [12] where the bottom level is 

composed of HMMs for feature analysis, and the top level is a stochastic context-

free parsing. This model shows improvement in performances of recognition of 

gestures over a flat HMM. However, one of the main drawbacks of the fully 

hierarchical models is the higher number of parameters to train (such as the 

complementary vertical transition probabilities), which induces the need of a large 

amount of training data. 

A major limitation of classical HMMs and derived HHMMs is the invalidity of 

the assumption of the independence of consecutive observations [14]. In a video 

this is clearly not the case. Hence the Segmental HMM (SHMM), introduced 

in [14], addresses the problem of variable length sequences of observation vectors 

as presented in [15]. The application to video has been, for example, shown for 

tennis video parsing [16] where thanks to SHMM different modalities can be 

processed with their native sampling rates and models. Once again, despite the 

gain in performance, these models have a much higher computational cost and 

number of parameters than the flat HMM. 

Applications to very structured video programs such as news or sports events have 

been successful. However, the more challenging context of lifelogs analysis arises 

new problematic and opens a much wider scope of applications for multimedia 

analysis. 
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c. Multimedia analysis of lifelogs 

The analysis of image lifelogs captured by the SenseCam device has led to the 

study of several issues. In [5] and [41], the automatic structuring of scenes in an 

unsupervised manner is used as an input to present an automatic summary of the 

daily activities. In [42], the authors extract global information on the various 

activities and lifestyle of the person by automatically estimating the presence of 

several semantic concepts in the lifelog thanks to low-level visual features 

classification. 

The WearCam [6] project uses a camera strapped on the head of young children. 

This setup allows capturing the field of view of the child together with his gaze in 

order to monitor the impairments in child’s development. 

The analysis of instrumental activities of daily living using egocentric vision was 

done in [17]. A HMM model taking into account the objects appearing in specific 

situated space models related to the person posture was proposed. They 

established the feasibility of activity recognition based on visual information. 

Because of the complexity of the task, they did not use real data, but simulated 

information for the 3D synthetic modeling of the person and the environment. 

Real data was used in [36], by combining both the wearable camera and inertial 

sensors as observation for a HMM model for the recognition of standardized 

actions related to cooking in a test environment. Action recognition was done 

using only the capture of hands manipulation with a wearable camera in [37]. 

Here, observation stemming from hand motion templates and external sensors for 

room transitions are fed to a Dynamic Bayesian Network that infers the activity 

from a set of predefined sequences of recognized manipulations.  

This analysis of the related work shows an increasing interest in the automatic 

interpretation of multimedia data obtained from wearable sensors. Taking from 

the successful HMM models for event detection and recognition in generic 

multimedia data, we will now propose a new method targeted at lifelog data. 

3. Problem statement and proposed approach 

Before developing the proposed algorithmic approach, we provide in this section 

additional information on the applicative context that motivates it, and that will 

guide the technical and methodological choices explained later on. After 
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explaining how the audio-visual data is obtained, we will provide more details on 

the taxonomy of the activities of interest. 

a. Objective 

The idea of this research from a medical point of view is to use the video 

recording in the same way as a clinical test such as MRI or radiography and to get 

these observations in a stress-less and friendly environment for the patient, while 

at home. In a target usage scenario, the doctor will ask the paramedical staff to 

visit the patient with the recording system. Then, the recorded video is 

automatically processed and indexed by our method off-line. Finally, the doctor 

will use the video and indexes produced by our analysis to navigate in it and 

search for the activities of interest. This visual inspection provides clinical 

elements to be used for the diagnosis of the disease or for the assessment of the 

evolution of the patient’s condition.  

The typical recording scenario consists of two stages. At the first stage the patient 

is asked to walk around his house with the device, which provides a bootstrap 

video that is representative of the environment. This short video will be annotated 

in order to build adapted reference models of the places of interest in the patient’s 

home. In the second stage, a longer video is recorded, which is the one to be 

indexed. During this stage, the patient is asked to perform some of the activities 

that are part of the clinical evaluation protocols in assessing dementia progress. 

These activities define the targeted events to be detected by our method. 

b. Data characteristics 

Following our preliminary work [4], a vest was adapted to be the support of the 

camera. The camera is fixed on the shoulder of the patient with hook-and-loops 

fasteners which allow the camera’s position to be adapted to the patient’s 

morphology. This position combined with the wide angle lens of the camera 

offers a large view field similar to the patient’s one. The microphone is integrated 

in the camera case and records a single audio channel. 

Thanks to the low weight and size of the camera and the weight distribution due 

to the vest, the acceptance of the device is very good. The volunteers have felt no 

discomfort while wearing it and were able to perform their activities as if the 

device was not present. An illustration of the device is given in FIGURE 1.  
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The videos obtained from wearable cameras are quite different from the standard 

edited videos in e.g. cinema, commercials, sports or TV programs of other genres. 

Indeed, edited videos which are usually a target of video indexing methods have 

smooth motion and are assembled from video shots with discontinuities at the shot 

borders. In our case, the video is recorded as a long continuous sequence. 

Such uninterrupted video is also encountered in surveillance applications, with the 

important difference that the latter deals with cameras that are stationary or with 

regular motions, such as PTZ. Videos from wearable cameras suffer from larger 

and irregular motion. Ego-motion of the patient even of a weak physical 

magnitude can yield strong changes in the field of view as well as a strong blur. 

Furthermore, when moving in a natural home environment, the patients face 

strong light sources, such as windows resulting in saturation of luminance in the 

field of view. The data variability is also very strong: the same activities are not 

performed by different patients in the same environment in opposite to “smart 

homes” setups [2]. Examples of challenging contents from wearable videos are 

represented in FIGURE 2. 

 

(a) Motion blur due to strong 

motion. 

 

(b) Low lighting while in dark 

environment. 

 

(c) High lighting while facing 

a window. 

FIGURE 2: Examples of frames presenting challenging content for video analysis. 

 
FIGURE 1: The recording device (red circle) fixed on the vest adapted to be the support of the 

camera. 
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c. Activities of Daily Living 

Up to now, the medical practitioners have been using a paper questionnaire while 

interviewing the patients and their relatives to determine their ability to correctly 

perform the following Activities of Daily Living (ADL): “Hoovering”, 

“Sweeping”, “Washing Clothes”, “Serving”, “Making Coffee”, “Making Snack”, 

“Hair Brushing”, “Phone”, “TV”, “Knitting”, “Plant Spraying”, 

“Listening to Radio”, “Wiping Dishes”, “Brushing Teeth”, “Washing Dishes”. 

These ADL are the target of automatic recognition in order to provide doctors 

with an efficient navigation tool throughout the video recorded at the patient’s 

home. In the rest of this paper, we will explain how to detect these activities, and 

evaluate the recognition performances based on ground truth data. The use of the 

obtained results inside an interface for browsing the content is the subject of 

ongoing work with the medical partners, and is out of the scope of this paper. 

d. Architecture of the proposed approach 

The proposed approach is based on the multi-modal analysis of the audio-visual 

content of the data captured with the wearable camera. The problem consists in 

the recognition of activities that are sequential in time, on the basis of noisy and 

variable data with some possible constraints on their time scheduling. We resort to 

HMMs, which proved to be an excellent model for such types of problems [33]. 

The global architecture is shown in FIGURE 3. The core is the Hierarchical HMM 

module (HHMM), which takes as input the multi-modal features to detect and 

segment activities of interest. To account for the specific temporal structure of the 

wearable video, motion estimation and a new specific temporal partitioning is 

done on the video data. It is used both as an input for motion description, and as a 

reference for temporal segmentation of the data stream for the HHMM. Multiple 

descriptors on video and audio are computed and fused to account for the various 

types of activities. We will now provide the details of each of these modules. 



11 

4. Hidden Markov Model for Video Structuring 

In this section, we propose an activity recognition model that takes into account 

both the complexity of our data and the lack of large amount of training data for 

learning purposes. If we abstract our problem of recognition of daily activities in 

the video to its simplest core, we can draw an equivalence between an activity and 

a hidden state of an HMM. This could be achieved by designing a fully connected 

HMM and training the inherent state-transition probabilities from the labeled data. 

Unfortunately, the ADL we consider are very heterogeneous and complex, 

therefore the suggested equivalence between an activity and a hidden state cannot 

hold. 

a. Two-level Hierarchical HMM (HHMM) 

Hence, we propose a two-level Hierarchical HMM (HHMM). The activities that 

are meaningful to the medical practitioners are encoded in the top-level HMM, the 

set of possible states is thus defined accordingly. We also introduce a reject state 

“None” to model non-meaningful observations from the doctors’ point of view. 

Defined as such, the top-level HMM contains the transitions between “semantic” 

activities including the reject class. A bottom-level HHM models an activity with 

 non-semantic states, as in [17]. The number of non-semantic states associated 

to a semantic state is fixed to 3, 5 or 7 for ADL states and to 1, 3, 5 or 9 for the 

reject class “None” in our experiments. A simplified illustration of the overall 

 
FIGURE 3: Global architecture of the proposed approach. 
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structure of the HHMM is presented in FIGURE 4, for the case of 3 states at the 

bottom level. 

b. Top-level HMM 

The top-level HMM represents the relations between the actions of interest, which 

are the ADL defined by the medical practitioners and another activity for all the 

irrelevant actions named “None”. We denote the set of states at this level by 

 and the transition matrix by , where  is the 

number of activities. In this work, no constraints were specified over the 

transitions between activities as such restrictions are very difficult to know a 

priori when addressing a larger set of activities and when analyzing a large set of 

videos where the physical constraints of each patient’s house are different. 

Moreover, the ADL a patient is asked to fulfill depend very much on his condition 

and their sequencing cannot be fixed for all patients in the same way. Hence, we 

design the top-level HMM as a fully connected one. We consider equi-probable 

transitions from activities states to one another, hence . These 

transitions are fixed a priori and are not re-estimated during the learning phase. 

The states of the top-level HMM modeling activities are denoted in FIGURE 4 by 

. The probabilities of vertical transitions are denoted by  and are 

modeled by using a virtual node ; they are the equivalent to the transitions 

denoted by  in the HHMM formalism of [13]. 

c. Bottom-level HMM 

Most of the activities, defined in the above section, are complex and could not 

easily be modeled by one state. For each activity  in the top-level HMM a 

bottom-level HMM is defined with the set of states  with 

 for ADL states and  states for the reject class 

“none” in our experiments. The state transition matrices , for  also 

correspond to a fully connected HMM: , at initialization, for  
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and . For the video stream not to be over-segmented the loop 

probabilities  have to be initialized with stronger values than other transition 

probabilities: . Activities are more likely to involve several 

successive observations rather than just one: this explains the choice for such a 

higher loop probability. 

At the bottom level, we consider a continuous HMM that models observations 

probability with a Gaussian Mixture Model (GMM), i.e. each non semantic state 

models the observation vector  by a GMM. In our model, we consider a diagonal 

covariance matrix. The number of states at the bottom level is fixed and will not 

be changed during the learning process. The GMM and the transitions matrix of 

all the bottom-level HMMs are learned using the classical Baum Welsh 

 
FIGURE 4: Generic structure of our two-level HHMM for modeling activities of a patient. Act. 

Activities, q: emitting states. Dashed circled states are non emitting states. In the experiments, this 

structure is defined for 16 or 23 ADL with 3, 5 or 7 non-semantic states. 
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algorithm [8] with labeled data corresponding to each activity. In our 

implementation of the designed two-level HHMM, we used the HTK library [30], 

which is available as open-source software [7]. 

For the recognition, the Viterbi algorithm is used. The HTK implementation 

makes efficient use of the “token passing” paradigm to implement a beam pruned 

Viterbi search [31]. 

5. Partitioning into analysis units 

The video structuring will rely on an analysis unit. We want to establish a 

minimal analysis unit which is more relevant than a single video frame. The 

objective is to segment the video into the different “viewpoints” that the patient 

provides by moving throughout his home. In contrast to the work in [5] where the 

description space is based on a fixed key-framing of the video, our goal is to use 

the motion of the patient as one of the features. This choice corresponds to the 

need to distinguish between activities of a patient which are naturally static (e.g. 

reading) and dynamic (e.g. hoovering). This segmentation into “viewpoints” of 

our long uninterrupted video sequences may be considered as an equivalent to 

partitioning of edited video sequences into shots. We now detail the designed 

motion-based segmentation of the video.  

a. Temporal integration of global motion 

Since the camera is worn by the person, the global motion observed in an image 

plane can be called the ego-motion. We model the ego-motion by the first order 

complete affine model and estimate it with a robust weighted least squares by the 

method we reported in [18]. The parameters of (1) are computed from the motion 

vectors extracted from the compressed video stream (H.264 in the current 

recording device) where one motion vector  is extracted for each 

image block and is assumed to follow the global motion model 

 
 

(1)  

with  being the coordinates of the block center. 
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To split the video stream into segments, we compute the trajectories of the frame 

corners using the global motion estimation previously presented. For each frame, 

the distance between the initial and the current position of a corner is calculated. 

We denote by  the image width and by  a threshold on the frame overlap rate. 

A corner is considered as having reached an outbound position once it has had a 

distance greater than  from its initial position in the current segment. These 

boundaries are represented by green and red (when the corner has reached an 

outbound position) circles in FIGURE 5. 

 
(a) Corner trajectories while the person is static. 

 
(b) Corner trajectories while the person is 

moving. 

FIGURE 5: Example of corners trajectories. 

b. Definition of Segments 

Each segment  corresponds to a temporal interval  which 

aims at representing a single “viewpoint”. The notion of viewpoint is clearly 

linked to the threshold . The latter defines the minimal proportion of the first 

frame of a segment, which should be contained in all its frames. This threshold 

was fixed to 0.2 according to performance results of previous experiments [32]. 

We define the following rules: a segment should contain a minimum of 5 frames 

and a maximum of 1000 frames. These boundaries on segment duration are 

   
FIGURE 6: An example of key frame (center) with the beginning (left) and ending (right) frames 

of the segment. 
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defined to avoid an over-segmentation of the video by setting a minimal duration 

corresponding to a sixth of second, and to avoid having a long static activity 

represented by a single segment [32]. The end of the segment is the frame 

corresponding to the time when at least 3 corners have reached at least once an 

outbound position. The key frame is then chosen as the temporal center of the 

segment, as illustrated in FIGURE 6. Hence the estimated motion model serves 

two goals: i) the estimated motion parameters are used for the computation of 

dynamic features in the global description space, and ii) the key frames extracted 

from motion-segmented “viewpoints” are the basis for extraction of spatial 

features. 

6. Multi-modal features 

Given the list of activities of interest, no single feature can resume all relevant 

information from the raw data. We therefore introduce the fusion of several 

features, combining visual descriptors (motion and static visual features), and 

audio descriptors. Each feature is designed to bring specific and complementary 

information about the observed activity. 

We first introduce descriptors that characterize the motion within the video 

recorded, then define the audio analysis and finally present static descriptors that 

gather the context of the patient’s environment. Finally, the fusion of all these 

features will be presented. 

a. Motion description 

Motion contains relevant information to characterize an activity. Indeed, the 

camera being worn by the patient, the global motion corresponds to the ego-

motion. Thus, the parameters of the global motion model are directly linked to the 

instantaneous displacement of the patient and can help to distinguish between 

static or dynamic activities. Since instantaneous motion may be limited to 

describe highly dynamic activities such as the hoovering, we will also propose a 

description of motion history that characterizes the dynamics on a longer term. 

Finally, the local residual motion is also important and may characterize a moving 

object or an interaction with an object. Therefore, a set of descriptors capturing 

several complementary properties of the observed motion will be defined. 
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i. Global and Instant Motion 

The ego-motion is estimated by the global motion analysis presented in 

section 5.a. The parameters a1 and a4 are the translation parameters. We limit our 

analysis to these parameters, since as in the case of wearable cameras, they better 

express the dynamics of the behavior, and pure affine deformation without any 

translation is practically never observed.  

The instant motion histogram is defined as the histogram of the log-energy of 

each translation parameter Htpe, as expressed in (2), defining a step sh and using a 

log scale. Since this histogram characterizes the instant motion it is computed for 

each frame. This feature is designed to distinguish between “static” activities e.g. 

“knitting” and dynamic activities, such as “sweeping”. 

 

 

(2)  

Eq. (2): Translation parameter histogram, associated to a segment , where aj is 

either a1 or a4. 

The feature for a video segment  is an averaged histogram on all its frames: 

, j=1,4 for horizontal and vertical translations parameters, respectively a1 

and a4. The global instant motion feature is the concatenation of both: 

. 

We denote by  the histogram of the log-energy of horizontal 

translation, and by  the histogram of the log energy of vertical 

translation observed in image plane. The number of bins  is chosen 

empirically. This configuration is fixed for all the experiments and has been 

determined on a corpus of six videos. The threshold  is chosen in such a way 

that the last bin corresponds to the translation of the image width or height 

respectively. 
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ii. History of Global Motion  

Another element to distinguish static and dynamic activities is the “motion 

history”. On the contrary to the instant motion, we design it to characterize long-

term dynamic activities, such as walking ahead, vacuum cleaning, etc. The 

estimation of this is done by computing a “cut histogram” Hc. The i-th bin of this 

histogram contains the number Hc(i) of cuts (according to the motion based 

segmentation presented in section 5.a) that happened in the last 2i frames, see 

FIGURE 7. The number of bins Nc is defined as 8 in our experiments providing a 

history horizon of 256 frames. This represents almost 9 seconds of our 30 fps 

videos. The history horizon was chosen to be the highest power of two lower than 

the minimal average duration of an activity. Such a definition is a good trade-off 

between long term history and potential overlapping of activities. Thus defined, 

the cut histogram is associated to each frame in the video. The descriptor 

associated to a full segment is the average of the cut histograms of the frames 

belonging to the segment. 

 

FIGURE 7: The number of cuts (black lines) is summed to define the value of each bin. In this 

example: Hc[1]=0, Hc[2]=0, Hc[3]=1, Hc[4]=1, Hc[5]=2, Hc[6]=7. 

iii. Local Residual Motion 

All the previous motion descriptors focus on the global motion which is very 

important as it provides a characterization of the ego-motion. However, the 

residual motion may reveal additional information, such as the occurrence of a 

manual activity or the presence of a moving object or a person in the visual field 

of view of the patient. We introduce a descriptor which is computed on each block 

of a 4×4 grid partitioning of an image. The value of the local residual motion 

 representing a block  is defined (see equation (3)) as the Root Mean Square 

(RMS) of the difference  between motion vector 

extracted from compressed stream and the one obtained from the estimated 
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model (1). The residual motion descriptor RM obtained by concatenating the 

values for the 4×4 blocks covering the whole image has therefore 16 dimensions. 

 

 

(3)  

Eq. (3): Residual Motion value for block  of width  and height . 

b. Audio 

The particularity of our contribution in the design of a description space consists 

in the use of low-level audio descriptors. Indeed, in the home environment, there 

are a lot of significant sounds: ambient TV audio track, noise produced by 

different objects that the patient is manipulating, conversations with the persons, 

etc. All these sounds are good indicators of an activity and its location. In order to 

characterize the audio environment, different sets of features are extracted. Each 

set is characteristic to detect a particular sound: speech, music, noise and silence 

with a constant objective: having robust audio features without training (or 

knowledge) of the audio context [26]. The whole system is illustrated on FIGURE 

8.  

Audio

Speech	  detection

4	  Hz	  energy
modulation

Speech	  probability

Fusion	  (scores)

Entropy
modulation

Segmentation

Music	  detection

Segment	  
duration

Music	  probability

Fusion	  (scores)

Number of	  
segments

Silence	  detection

Energy Silence	  probability

Noise	  detection

MFCC	  
with GMM

Spectral	  
cover

Water	  flow	  and	  
vacuum	  cleaner
probabilities

Other noise	  
probabilities

7	  audio	  
confidence	  
indicators

 
FIGURE 8: Extraction system for audio confidence indicators (probabilities). 
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Energy is used for silence detection. 4 Hertz energy modulation and entropy 

modulation give voicing information, being specific to the presence of speech. 

The number of segments per second and the segment duration, resulting from a 

“Forward-Backward” divergence algorithm [25], are used to find harmonic sound, 

like music. To precise the noise component, we propose an original low level 

descriptor called “spectral cover” that allows recognizing two specific sound 

events: water flow and vacuum cleaner [34]. These features are based on a 

threshold to determine if the sound is present or absent. Then, for each sound 

type, the confidence measure (probability) is the proportion of detected events by 

segment (defined in section 5.b).  

This audio system is complemented with a classical approach (MFCC-based 

GMM) to have more noise information: percussion and periodic sounds 

(examples: footstep, home appliance, applause, laugh, etc.). These two features 

provide, like the previous ones, probabilities (see also FIGURE 8). Model 

parameters were not learned on the IMMED corpus but on a radio corpus from the 

ESTER2 evaluation campaign for the Sound Event Segmentation (SES) task [35]. 

Finally, the complete set of audio descriptors is composed of 7 possible events: 

speech, music, noise, silence, periodic sounds, water flow and vacuum cleaner. 

c. Static descriptors 

Static descriptors aim to characterize the instantaneous state of the patient within 

his/her environment. The first static descriptor is the localization estimation. As 

many activities are linked to a specific location e.g. cooking in the kitchen, this 

feature is essential to provide a context for the activities. The second defines the 

local spatial and color environment using the MPEG-7 descriptor “Color Layout”. 

This descriptor aims at capturing the spatial and color organization of local pattern 

when the patient is in a more specific situation, such as facing a sink or a gas 

cooker for example. 

i. Localization 

We use the Bag of Visual Words method [19] for representing an image as a 

histogram of visual words. Low level visual information contained within an 

image is captured using local features SURF [22] descriptors. Descriptors are 

quantized into visual words using a pre-built vocabulary which is constructed in a 
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hierarchical manner [20]. The Bag of Words vector is built by counting the 

occurrence of each visual word. Due to rich visual content, the dimensionality of 

such histograms is very high (we used a 1111 word dictionary in our context). A 

kernel based approach based on the SVM classifier [24] was therefore chosen to 

obtain location estimates. The histograms were compared with the intersection 

kernel, which is adapted to such features. In practice, the feature extraction step 

can be done without annotation, and can be run as a preprocessing routine. 

Dimensionality reduction through non-linear Kernel PCA [21] with intersection 

kernel was included in this routine to reduce the size of the stored descriptors to 

several hundred linear dimensions [23]. Classification was then applied directly 

on these simplified descriptors. A one-vs-all approach was used to address the 

multi-class classification problem. The final location was represented as a vector, 

containing a 1 for the detected class (within “bathroom”, “bedroom”, “kitchen”, 

“living room”, “outside”, “other” or “reject”), and 0 for the other classes. 

ii. Spatial and color description 

Using the extracted key frames representing each segment, a simple description of 

the local spatial and color environment is expected. In this choice we seek for the 

global descriptors which characterize the color of frames while still preserving 

some spatial information. The MPEG-7 Color Layout Descriptor (CLD) proved to 

be a good compromise for both [27]. It is a vector of DCT coefficients computed 

on a roughly low-passed filtered and sub-sampled image. We compute it on each 

key frame and retain 6 parameters for the luminance and 3 for each chrominance 

as in [28]. This descriptor provides a coarse yet discriminative visual summary of 

the local environment. 

d. Descriptors fusion 

For the description of the content recorded with the wearable camera we designed 

three description subspaces: the “dynamic” subspace has 34	   dimensions, and 

contains the descriptors ; the “audio” subspace contains 

the k = 7 audio descriptors ; the “static” subspace contains 19 

coefficients, more precisely l = 12	  CLD coefficients  and m = 7	  

localization coefficients . A reminder of the descriptors 

definitions is given in Table 1. 
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We design the global description space in an “early fusion” manner concatenating 

all descriptors in an observation vector  in  space with n = 60 dimensions 

when all descriptors are used, thus, the designed description space is 

inhomogeneous. We will study the completeness and redundancy of this space in 

a pure experimental way with regard to the indexing of activities in Section 7, by 

building all the possible partial fusions. 

Table 1: Descriptors definitions. 

Dynamic 

 Instant global motion descriptor 

 History of global motion descriptor 

 Local motion descriptor 

Static 
CLD Color Layout Descriptor (MPEG-7) 

 
Localization estimation within the 7 

localization classes 

Audio  
Concatenation of the 7 audio probabilistic 

features 
 

7. Experiments 

a. Corpus 

The experiments are conducted on a corpus of videos recorded with our wearable 

device by patients in their own houses. A video recording is of an average 

duration of 40 minutes and contains approximately 10 activities; not all activities 

are present in each video. Each video represents an amount of 50000 to 70000 

frames, which induces hundreds to a thousand segments according to our motion-

based temporal segmentation, see section 5. The description spaces are built using 

each descriptor separately and with all possible combinations of descriptors where 

order is not considered. Therefore, a total of 63 different descriptions spaces are 

considered. 

The experiments are conducted in two stages. First, on a corpus of 5 videos 

recorded with 5 different patients. The aim of this first experiment is to analyze 

the overall performances of all the descriptors combinations and of the HMM 

configurations. The influence of the proposed motion-based temporal 
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segmentation is also discussed in the first experiment. The second experiment 

uses a subset of all the descriptors combinations, selected as the 13 best 

performances. The HMM configurations are also limited to those who have shown 

the best performances on the first experiment. In this experiment, the corpus is 

larger as it contains 26 videos. The latter constitutes a unique corpus which has 

been recorded on healthy volunteers and patients during two years since the 

beginning of the research. The performance analysis is also two-fold: we evaluate 

it in terms of global accuracy and for singular activities. 

b. Evaluation metrics 

To evaluate the overall performance of the proposed model we used the global 

accuracy metric, which is a ratio between the number of correct estimations and 

the total number of observations. Any misclassification of an activity, which will 

correspond to a false negative (FN) with regard to the ground truth activity and to 

a false positive (FP) with regard to the detected activity, will decrease the global 

accuracy metric. 

Table 2: Evaluation metrics. 

  

  

 

The precision, recall and F-score metrics are used for the evaluating the 

recognition performances of a particular activity. True positives (TP), true 

negatives (TN), false positives (FP) and false negatives (FN) values correspond to 

the correct detection, correct absence, misdetection and missed detection 

respectively for a given activity. The definitions of the used metrics are presented 

in Table 2.  

c. Learning and testing protocol 

The experiments are conducted in a leave-one-out cross validation scheme, i.e. the 

HMMs are learned using all videos except one which is used for testing. The 
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results are presented in terms of global accuracy of recognition averaged over the 

cross validation process.  

The training is performed over a sub sampling of smoothed data extracted from 

the video frames. The smoothing substitutes the value of each frame descriptor by 

the average value on the 10 surrounding frames, then one of ten samples is 

selected to build ten times more learning sequences. The testing has been done on 

frames or segments of the last video. The label of a segment is derived from the 

ground truth as being the activity having the more frames labeled within the 

segment boundaries. 

In the first experiment presented here, the bottom level HMM of each activity has 

3 or 5 states. For a given evaluation, all activities have the same number of states, 

except the “None” which may be modeled with more or fewer states, here 9 or 

only one. We denote by “Xstates” the configuration where all activities have the 

same number (X) of states and “XstatesNoneYStates” the configuration where 

genuine activities have X states and the reject class “None” has Y states. Inside 

 

FIGURE 9: Global accuracy evaluation of recognition using frames (blue curve and square points) 

and segments (red curve and diamond points) over all the description spaces fusion tested (sorted 

by decreasing accuracy with respect to segments approach). Please refer to Table 1 for descriptors 

nomenclature. 

NB: For a better readability of the figure, results are shown for a selected configuration 

(3statesNone1State) of the HMMs but are similar for other configurations. 
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each state, all observation models are initialized with 5 Gaussians mixtures except 

when the reject class “None” is modeled by one state which is then modeled by 

only one Gaussian. 

 The activities of interest considered for the first experiment correspond to the 

following ADLs: “Plant Spraying”, “Remove Dishes”, “Wipe Dishes”, 

“Meds Management”, “Hand Cleaning”, “Brushing Teeth”, “Washing Dishes”, 

“Sweeping”, “Making Coffee”, “Making Snack”, “Picking Up Dust”, 

“Put Sweep Back”, “Hair Brushing”, “Serving”, “Phone” and “TV”. We will 

specify a more complete list for the subsequent experiments. In the following we 

report the global performances of the evaluation for all activities and also more 

specific performances for some activities of interest. In the plots shown, the 

results per descriptor are sorted in decreasing order of performance. 

d. Evaluation of the influence of temporal segmentation 

The proposed temporal segmentation reveals three main advantages. First, the 

amount of data to process in the recognition process is divided by a factor 

between 50 and 80 since one observation is defined for a segment and not for a 

frame. Second, the key frames may be used as a summary of the whole video 

which is relevant as it gathers the evolution of the patient in successive places. 

Finally, the evaluation of recognition performance presented in FIGURE 9 shows 

that the results are better when the recognition process is run on segments. In this 

figure the results are sorted in decreasing order. The best results are always 

obtained with segments as observations and other results are similar using frames 

or segments. 

e. Global evaluation of the description space 

FIGURE 9 also shows which configurations are the most successful for the task. 

All the 33 best configurations are actually all the configurations including the 

 descriptor. We will therefore in the following only consider configurations 

which include , and evaluate all possible combinations of it with the other 

descriptors. The results are presented in FIGURE 10. Once again, a significant 

gain in performance can be observed when using segments instead of frames 

observations, the best accuracy for segments is 0.31 while the best accuracy for 
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(a) Results using frames as observations 

 
(b) Results using segments as observations 

 

FIGURE 10: Global accuracy evaluation of recognition using segments over CLD and all possible 

fusion with CLD description spaces using frames (a) or segments (b) as observations. The curves 

represent 6 different HMM configuration: 3 states, 3 states with “None” class being modeled with 

only one state, 3 states with “None” class being modeled with 9 states, 5 states, 5 states with 

“None” class being modeled with only one state, 5 states with “None” class being modeled with 9 

states. 



27 

frames is 0.17. Here, the best global performance is obtained for the fusion 

 and good performances are also obtained for description spaces 

, ,  and . The  

descriptor seems efficient to capture some of the characteristic noises of activities 

which may occur for “Washing Dishes” or “Brushing Teeth” for example. 

f. Global evaluation of the reject class model 

We have also investigated the influence of modeling the reject class “None” in a 

different way than all the ADL classes. We have performed experiments when 

modeling this “None” class by a single state HMM or by a much more complex 9 

states HMM. From the same FIGURE 10, we can see that performances with the 

reject class being modeled as a single state are clearly poorer and using 9 states 

does not significantly improve or degrade the performance. However, this 

configuration with 9 states for the “None” class shows good performances in high 

dimensionality description spaces built upon video segments.  

 
FIGURE 11: Global accuracy of the proposed approach and the GMM baseline with regards to all 

description space candidates. The results are sorted by decreasing median accuracy of the 

proposed approach. 
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g. Evaluation recognition of activities on the whole corpus 

Finally, the second experiment is run on a corpus of 26 videos following the same 

leave-one-out cross validation scheme. The description space candidates are the 

13 best configurations from the first experiment. The number of states in the 

bottom-level HMM is fixed to 3. We have defined a GMM baseline where a 

GMM is learned for each activity on the same set of training data used for the 

HHMM approach. In this experiment, the 23 different activities are “Food manual 

preparation”, “Displacement free”, “Hoovering”, “Sweeping”, “Cleaning”, 

“Making a bed”, “Using dustpan”, “Throwing into the dustbin”, “Cleaning dishes 

by hand”, “Body hygiene”, “Hygiene beauty”, “Getting dressed”, “Gardening”, 

“Reading”, “Watching TV”, “Working on computer”, “Making coffee”, 

“Cooking”, “Using washing machine”, “Using microwave”, “Taking medicines”, 

“Using phone”, “Making home visit”. 

An overview of the results in this larger scale experiments are given in FIGURE 

11. The proposed approach clearly outperforms the GMM baseline. The best 

median accuracy for the GMM is 0.16, obtained for the description space 

, while the HHMM approach obtains a best median accuracy 

of 0.42 for the complete description space . The gain of 

performance compared to the first experiment can be explained by the larger 

amount of training data. However, it is important to state the large variance of 

accuracy between 0.1 and 0.9. This shows the difficulty of our task. 

h. Evaluation for specific activities 

A more in depth analysis of the performances for activities recognition is given in 

FIGURE 12. We have selected a subset of four activities (“Hoovering”, “Making 

a bed”, “Reading” and “Working on computer”) where the performances vary 

strongly when different description spaces are used. The performances are given 

in terms of accuracy, recall, precision and F-score. Note that the accuracy metric, 

when computed by activity, can easily be high since true negatives have positive 

impact on the performance. The results are sorted by decreasing precision as 

exchanges with the doctors have led to the conclusion that it was better to have 

less but more accurate detections, which is exactly what good precision metric 

values represent. 
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For the activity “Hoovering”,  is essential as the 7 best performances 

contains the  descriptor, see FIGURE 12.a. This can be clearly linked with 

the fact that one of the coefficients of the  descriptor corresponds to the 

detection of a “hoover” sound. The best trade-off between recall and precision, i.e. 

the best F-score, is obtained for the description space  which 

contains global and local instantaneous motion descriptors in addition to  

and . The complete description space  is also a 

good trade-off between recall and precision. 

The second activity studied is “Making a bed”, the results are presented in 

FIGURE 12.b. For this activity the four top results contains the three descriptors 

 
(a)  

 
(b)  

 
(c)  

 
(d)  

FIGURE 12: Performances according to the four metrics: recall (red curves, “+” points), precision 

(green curves, “x” points), F-score (blue curves, “*”points) and accuracy (pink curves, square 

points). The results are sorted by decreasing precision. a) “Hoovering”, b) “Making a bed”, c) 

“Reading” and d) “Working on computer”. 
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,  and , the best results being obtained for the description space 

. This activity will always happen in the bedroom, thus the presence of 

the  descriptor in the best description spaces is not surprising. The  

descriptor is helpful to characterize the fact that a patient moves around the bed 

while performing this activity. 

The third activity “Reading” is more static and involves localized residual motion 

while turning the pages of the book being read. This is confirmed as the 5 top 

description spaces incorporate the  descriptor, see FIGURE 12.c. The static 

component of the activity is captured by the motion descriptors. Both  and  

seem efficient at capturing this characteristic. The activity “Reading” being more 

likely in a limited set of locations, the  descriptor is also present in most of the 

best configurations. 

FIGURE 12.d depicts the results for the last activity we studied: “Working on 

computer”. The best description spaces contain the  and  descriptors 

combined with at least one motion descriptor. Once again, the complete 

description space gives one of the best performances. 

8. Conclusions and perspectives 

In this paper we have tackled the problem of activity recognition in videos 

acquired with a camera worn by patients for the study of the dementia disease. 

These videos are complex, with strong and irregular motion and lighting changes, 

the presence of activities of interest in the recordings is rare. 

We have proposed to solve the problem using the HMM formalism. A 

Hierarchical two level HMM was proposed to model both the semantic activities 

from the taxonomy defined by medical doctors and non-semantic intermediate 

states. In order to define the observations of the Hierarchical HMM we introduced 

a new concept of camera “viewpoint” and proposed a temporal segmentation of 

the video thanks to the analysis of the apparent motion. 

We defined multimodal description spaces comprising motion features, static 

visual features and audio descriptors. Both low-level descriptors and mid-level 

features were used, with the objective to extract complementary and relevant 
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information. The observations for training and recognition with the HHMM were 

obtained by the combination of the proposed features in an early fusion manner. 

We also introduced a state modeling the rejection class within the upper-level 

HMM. This is necessary for the description of our natural content, which contains 

transitions between the activities of interest and non-relevant actions of the 

patients. 

The proposed model was tested on the unique-in-the-world video corpus acquired 

with healthy volunteers and patients in an “ecological” environment, i.e. at their 

homes. The taxonomy of activities was defined by medical researchers and the 

proposed framework was tested with cross-validation to recognize them. In these 

tests the optimal configurations of description space ensure performance which is 

nearly 8 times better than chance and 4 times better than a GMM baseline. 

Detailed studies of different description spaces and HHMM states configurations 

have revealed that: 

• (i) temporal segmentation into view-points improves the performances due 

to the filtering of the descriptors within meaningful units of time; 

• (ii) for the bottom-level HMM in our hierarchical model, three states are 

sufficient to model the internal structure of each semantic activity; 

• (iii) as far as the description space is concerned, the complete description 

space combining all available features performs best in terms of median 

accuracy. Even when it is difficult to choose an absolute winner for 

description space composition, the best overall performances are ensured 

when static color descriptors of a scene content are present; 

• (iv) the optimal description space varies per activity, each descriptor 

bringing more information for a specific activity; this often correlates 

with “common sense”: e.g. the hoovering activity is the best recognized 

with audio features in description space. 

The last statement makes us think that despite interesting performances the 

proposed framework reaches for this challenging application, the future is in the 

incorporation of more semantic features in the description space. Events from 

more complete wearable sensor sets can be used, such as accelerometers and 

others. The combination of such sensors with wearable video and audio offers 

new avenues to be explored. In video, we think about defining a concept flow 

related to the recognition of objects that the person manipulates. This would 
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leverage the fusion of information from video and other sources. Last, the good 

acceptance of the wearable sensor device by patients, indicate that the proposed 

approach has the potential for direct clinical perspectives. 
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