Skip to main content
Log in

An image composition algorithm for handling global visual effects

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Image composition is widely used in television and film industry to create synthetic visual effects. It requires seamless integration of different parts of two or more images into a single image. Existing image composition techniques only change the local contents of the resulting image while in many cases local changes may also require some global effects as well. For example, if the image of sun from one image is transferred to another image, the global brightness pattern should also be transferred. Unfortunately existing techniques cannot handle global effects of local content manipulations. This paper describes a novel image composition technique which captures global effects associated with a specific local content from one image and incorporates in the second image. In our proposed technique, all images are transformed to the frequency domain. The composite image is created in frequency domain by mixing different frequencies from multiple images and then transformed back to the spatial domain. We have experimented the proposed technique to shift the image of sun along with its global brightness pattern, the global effects of rain and also for transferring global texture pattern from one image to the other. In most of the cases the results produced by our algorithm appear far close to real images than state of the art existing image composition techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Notes

  1. In the rest of the text term segment and content will be used interchangeably.

  2. Source code is taken from author’s website: http://www.umiacs.umd.edu/~aagrawal/ICCV2007Course/index.html.

References

  1. Adelson EH, Anderson CH, Bergen JR, Burt PJ, Ogden JM (1984) Pyramid methods in image processing. RCA Eng 29(6):33–41

    Google Scholar 

  2. Agarwala A, Dontcheva M, Agrawala M, Drucker S, Colburn A, Curless B, Salesin D, Cohen M (2004) Interactive digital photomontage. ACM Trans Graph 23:294–302. doi:10.1145/1015706.1015718

    Article  Google Scholar 

  3. Arivazhagan S, Ganesan L, Subash Kumar T (2009) A modified statistical approach for image fusion using wavelet transform. Signal Image Video Process 3:137–144. doi:10.1007/s11760-008-0065-4

    Article  Google Scholar 

  4. Boykov Y, Jolly MP (2001) Interactive graph cuts for optimal boundary amp; region segmentation of objects in n-d images. In: Proceedings of eighth IEEE international conference on computer vision, 2001, ICCV 2001, vol 1, pp 105–112. doi:10.1109/ICCV.2001.937505

  5. Boykov Y, Veksler O, Zabih R (2001) Fast approximate energy minimization via graph cuts. IEEE Trans Pattern Anal Mach Intell 23:1222–1239. doi:10.1109/34.969114. http://portal.acm.org/citation.cfm?id=505471.505473

    Article  Google Scholar 

  6. Farid M, Mahmood A (2012) Image morphing in frequency domain. J Math Imaging Vis 42:50–63. doi:10.1007/s10851-011-0273-3

    Article  MATH  MathSciNet  Google Scholar 

  7. Fattal R, Lischinski D, Werman M (2002) Gradient domain high dynamic range compression. ACM Trans Graph 21:249–256. http://doi.acm.org/10.1145/566654.566573

    Article  Google Scholar 

  8. Flitti F, Collet C, Slezak E (2009) Image fusion based on pyramidal multiband multiresolution markovian analysis. Signal Image Video Process 3:275–289. doi:10.1007/s11760-008-0080-5

    Article  MATH  Google Scholar 

  9. Goshtasby AA (2005) Fusion of multi-exposure images. Image Vis Comput 23:611–618. doi:10.1016/j.imavis.2005.02.004

    Article  Google Scholar 

  10. Gracias N, Mahoor M, Negahdaripour S, Gleason A (2009) Fast image blending using watersheds and graph cuts. Image Vis Comput 27(5):597–607. The 17th British machine vision conference (BMVC 2006). doi:10.1016/j.imavis.2008.04.014. http://www.sciencedirect.om/science/carticle/pii/S0262885608001005

    Article  Google Scholar 

  11. Graphics IC, Staff A (1994) Compositing, part 1: theory. IEEE Comput Graph Appl 14:83–87. doi:10.1109/38.310740. http://portal.acm.org/citation.cfm?id=616032.617920

    Google Scholar 

  12. Haenselmann T, Busse M, Kopf S, King T, Effelsberg W (2009) Multi perspective panoramic imaging. Image Vis Comput 27(4):391–401. doi:10.1016/j.imavis.2008.06.008. http://www.sciencedirect.com/science/article/pii/S0262885608001303

    Google Scholar 

  13. Jia J, Sun J, Tang CK, Shum HY (2006) Drag-and-drop pasting. ACM Trans Graph 25:631–637. http://doi.acm.org/10.1145/1141911.1141934

    Article  Google Scholar 

  14. Levin A, Zomet A, Peleg S, Weiss Y (2003) Seamless image stitching in the gradient domain. In: Eighth European conference on computer vision (ECCV 2004). Springer, pp 377–389

  15. Pérez P, Gangnet M, Blake A (2003) Poisson image editing. ACM Trans Graph 22:313–318. http://doi.acm.org/10.1145/882262.882269

    Article  Google Scholar 

  16. Porter T, Duff T (1984) Compositing digital images. SIGGRAPH Comput Graph 18:253–259. http://doi.acm.org/10.1145/964965.808606

    Article  Google Scholar 

  17. Rother C, Kolmogorov V, Blake A (2004) “Grabcut”: interactive foreground extraction using iterated graph cuts. ACM Trans Graph 23:309–314. http://doi.acm.org/10.1145/1015706.1015720

    Article  Google Scholar 

  18. Suo J, Lin L, Shan S, Chen X, Gao W (2011) High-resolution face fusion for gender conversion. IEEE Trans Syst Man Cybern, Part A, Syst Humans 41(2):226–237. doi:10.1109/TSMCA.2010.2064304

    Article  Google Scholar 

  19. Szeliski R (2006) Image alignment and stitching: a tutorial. Found Trends Comput Graph Vis 2:1–104. doi:10.1561/0600000009. http://portal.acm.org/citation.cfm?id=1295184.1295185

    Article  Google Scholar 

  20. Toet A (1990) Hierarchical image fusion. Mach Vis Appl 3:1–11. doi:10.1007/BF01211447

    Article  Google Scholar 

  21. Toet A, van Ruyven JJ, Valeton J (1989) Merging thermal and visual images by a contrast pyramid. Opt Eng 14:789–792

    Google Scholar 

  22. Wallace BA (1981) Merging and transformation of raster images for cartoon animation. SIGGRAPH Comput Graph 15:253–262. http://doi.acm.org/10.1145/965161.806813

    Article  Google Scholar 

  23. Yang W, Zheng J, Cai J, Rahardja S, Chen CW (2009) Natural and seamless image composition with color control. Trans Img Proc 18(11):2584–2592

    Article  MathSciNet  Google Scholar 

  24. Zhang Q, Wang L, Li H, Ma Z (2011) Similarity-based multimodality image fusion with shiftable complex directional pyramid. Pattern Recogn Lett 32:1544–1553. doi:10.1016/j.patrec.2011.06.002

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Shahid Farid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farid, M.S., Mahmood, A. An image composition algorithm for handling global visual effects. Multimed Tools Appl 71, 1699–1716 (2014). https://doi.org/10.1007/s11042-012-1303-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-012-1303-x

Keywords

Navigation