

Repositorio Institucional de la Universidad Autónoma de Madrid

https://repositorio.uam.es

Esta es la versión de autor del artículo publicado en:
This is an author produced version of a paper published in:

Multimedia Tools and Applications 71.3 (2014): 1803 – 1822

DOI: http://dx.doi.org/10.1007/s11042-012-1306-7

Copyright: © 2014 Springer US

El acceso a la versión del editor puede requerir la suscripción del recurso

Access to the published version may require subscription

https://repositorio.uam.es/
http://dx.doi.org/10.1007/s11042-012-1306-7

Multimedia Tools and Applications manuscript No.
(will be inserted by the editor)

Audio Scrambling Technique Based on Cellular Automata

Alia Madain · Abdel Latif Abu Dalhoum · Hazem Hiary · Alfonso Ortega · Manuel

Alfonseca

Received: date / Accepted: date

Abstract Scrambling is a process that has proved to be very

effective in increasing the quality of data hiding, watermark-

ing, and encryption applications. Cellular automata are used

in diverse and numerous applications because of their ability

to obtain complex global behavior from simple and localized

rules. In this paper we apply cellular automata in the field of

audio scrambling because of the potential it holds in achiev-

ing a high scrambling degree. We also analyze the effect

of using different cellular automata types on audio scram-

bling and we test different cellular automata rules with dif-

ferent Lambda values. The relation between the robustness

and the scrambling degree is also studied. Experimental re-

sults show that the proposed technique is robust to data loss

attack and can be applied to different applications based on

the scrambling degree required.

Keywords Audio Scrambling · Cellular Automata · Game

of Life · Lambda Parameter

1 Introduction

The term audio scrambling has a long history. A century ago,

audio scrambling was the only way to hide analog audio

information transmitted, and the scrambling relied mainly

on altering the audio signal in the time domain, the fre-

quency domain, or both. Later, scrambling of other media

types was used. For example, scrambling techniques were

used in copyright protection of cable TV broadcast; secure

image transfer from satellites to ground stations, and mili-

tary communications [1].

Alia Madain, Abdel Latif Abu Dalhoum, Hazem Hiary

University of Jordan, Amman 11942, Jordan

Tel.: +962-6-5355000, Ext.: 22575

E-mail: hazemh@ju.edu.jo

Alfonso Ortega, Manuel Alfonseca

Universidad Autónoma de Madrid, Madrid, Spain

With the rapid development of information technology,

the applications of audio scrambling varied significantly; al-

though it is still used in the field of security, it is considered

as a pre-process or post-process of watermarking, informa-

tion hiding, fingerprinting, and encryption.

The techniques that use scrambling have many appli-

cations; for example, Fingerprinting is one of the effective

means of copyright protection of multimedia transmitted to

massive users using the multicast method [2], the develop-

ment of robust data hiding system helps more technologies

find new and promising applications [3], and watermarking

is one of the methods used in Intellectual Property (IP) pro-

tection which is an important element in multimedia trans-

mission and delivery systems [4].

In our proposed algorithm we aim to get a high scram-

bling degree using cellular automata (CA). In addition, this

work seeks to find out how to best benefit from cellular au-

tomata characteristics, what types will lead to better scram-

bling and analyzing the complex and chaotic behavior of CA

in terms of audio scrambling. We also test the robustness of

cellular automata techniques against data loss attack where

1/3 the data is lost.

The remaining of this paper is organized as follows: in

section 2 we review related work briefly; section 3 covers

essential cellular automata background information; this is

followed by a description of the scrambling algorithm pro-

posed and the scrambling degree measurements in section 4;

section 5 gives the analysis and discussion of the experimen-

tal results; and finally, in section 6, we conclude the work

done and discuss possible directions for future work.

2 Related works

A lot has been done in the field of scrambling. For digital im-

ages, many scrambling methods are available, such as those

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

2 Alia Madain et al.

based on Arnold transformation [5], Advanced Encryption

Standard (AES) and error-correcting code [6], cat chaotic

mapping [7], and dynamic twice interval-division [8], among

others.

Cellular automata have also been used for digital im-

age scrambling: Ye and Li [9] described the use of CA with

chaotic behavior, while Abu Dalhoum et al. [10] proved that

CA with complex behavior scrambles better than those with

chaotic behavior. In this paper we extend work done in dig-

ital image scrambling and apply it to digital audio.

Many researchers have worked on audio scrambling: the

work done in [11,12] and used in [13], for example, uses

variable dimension operation to address problems in one di-

mensional linear mapping. The algorithm changes the di-

mension of coordinates and uses a transformation matrix to

scramble the original audio. The process requires padding

with zeros, and calculating the new position is highly de-

pendent on the dimension.

In [14], audio scrambling depends on combining two al-

gorithms. The combined algorithm takes two positive inte-

gers as keys; the first is used in one of the algorithms, while

the other determines the execution sequence of the two al-

gorithms.

Our main goal in this paper is to achieve a high scram-

bling degree by breaking the correlations between audio sam-

ples, and to get a high degree of confusion and diffusion.

The algorithm proposed uses 2D cellular automata without

any additional padding; moreover the key values are inde-

pendent from the audio file.

3 Cellular Automata

Cellular automata (CA) are simple and highly parallel mod-

els of computation which can exhibit complex behavior [15].

They are used in many applications covering different fields,

for example, to model complex dynamic systems in chem-

istry and biology [16], as in [17] and [18].

This paper uses two dimensional cellular automata. The

model implies a grid of identical cells, each cell can be in

one of two states, zero or one (also called on or off, dead or

alive). From a given initial state, the state of the grid cells

changes from one iteration (generation) to the next, or stays

the same, based on a transition function (or rule) which de-

pends on the state of the specified cell and the states of its

neighbors in the previous generation. The transition function

is applied simultaneously to every cell in the grid.

3.1 Cellular automata neighborhood and boundary

condition

The actual neighborhood chosen is usually crucial for the

global behavior of a CA [19]. In this paper we consider

two common 2D neighborhoods, von Neumann and Moore.

In von Neumann’s neighborhood every cell has four neigh-

bors: the cells at its North, South, East, and West, whereas

in Moore’s neighborhood the cells at the four diagonals are

also considered.

In an infinite grid, every cell has a full neighborhood,

but in a finite grid there must be a way to handle cells on

the edges. We will consider both null and periodic bound-

ary conditions in our experiments. A CA is said to have a

null boundary if the left (right) neighbor of every leftmost

(rightmost) cell is supposed to be neighbor to a cell in the

zero state, and a periodic boundary if the extreme cells at

opposite sides are adjacent to one another [20].

3.2 Cellular automata Lambda parameter (λ)

Not all types of cellular automata result in a complex behav-

ior and there are many attempts to group cellular automata

with the same behavior. According to Wolfram, it seems that

the patterns which arise from different types of cellular au-

tomata can almost always be assigned to one of just four

basic classes [21]. In class1, patterns evolve into a stable,

homogeneous state; class2 patterns evolve to periodic state;

in class3 a chaotic behavior appears; and in class4, config-

urations contain structures which interact in complex and

interesting ways.

A way to describe the relation between the transition

rules and the behavior of the CA is the λ parameter, de-

fined by Chris Langton [22]. A small value of λ indicates

that the CA evolves to a stable state, which corresponds to

Wolfram class1; a higher value describes a periodic behav-

ior, as in class2; for values close to 1, the CA behavior tends

to be chaotic, as in class3; for some critical values of λ ,

the CA exhibits complex behavior, as in class4. Ideally, all

transition functions with the same λ exhibit similar behav-

ior [23].

3.3 Calculating the Transition Rule Number

In [9] the Rule number (C) is calculated as follows:

C =
1

∑
s=0

8

∑
n=0

f (s,n)× 22n+s (1)

where f is the transition function, s is the current state at

time t and n is the number of neighboring cells with s = 1.

The transition function f produces the state s at time t + 1,

if the combination between the current state at time t and

the neighboring cells with s = 1 results in st+1 = 1, then

the amount 22n+s is added to the rule number. The Moore

neighborhood is assumed in this equation.

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Audio Scrambling Technique Based on Cellular Automata 3

3.4 Conway’s Game of Life (GOL)

The rules of Conway’s game of life are simple [24], and can

be described as follows:

– Survival. If a cell is alive at time t, it will remain alive at

time t + 1 if and only if it has either two or three neigh-

bors alive at time t.

– Birth. If a cell is dead at time t, it becomes alive at time

t + 1 if exactly three of its neighbors are alive at time t.

– Death. If a cell is alive at time t, it will die at time t + 1

if less than two (isolation) or more than three (overpop-

ulation) neighbors are alive at time t.

4 Audio scrambling based on cellular automata

The technique we are proposing can be divided into two pro-

cesses: first the audio is scrambled and used as the base for

further processing, or perhaps sent directly; then the audio

is descrambled to generate the final version for distribution

(in case of watermarking) or to retrieve the ciphered infor-

mation (in case of encryption). Both the scrambling and de-

scrambling processes depend on the key generation process

to produce the indices used for scrambling.

4.1 Scrambling algorithm (ASCA)

The scrambling algorithm (ASCA) takes the audio file as

input and produces a scrambled audio plus a key as the out-

put. The key specifies the indices used for scrambling. The

procedure starts by determining the length of the audio file

which will be used to increase the dimension of the audio,

then a list of the new indices is generated using rules of the

game of life, a Moore neighborhood and a periodic bound-

ary. This list is used to fill the two dimensional matrix with

the original audio samples, then the dimension is decreased

and the scrambled audio file is written with the same sam-

ple rate and number of bits per sample as its original. The

algorithm can be described as follows:

(1) Read audio file X and determine its length: length(X).
(2) Select M such that (M− 1)2 < length(X) < M2. Build

an M×M empty matrix A.

(3) Calculate the last index (in row first order) occupied by

the wave samples if they were inserted into a matrix of

size M×M. All positions before this point are within

range.

(4) Get the new list of indices L, using the key generation

process described in section 4.2.

(5) Initialize a pointer to point to the first cell in the audio

array: ptr = 1.

(6) For each index in L, if it is within range, then A [index] =

X [ptr]. Increment ptr.

(7) While ptr is less than length(X), insert the remaining

values in A, in row first order using the same procedure.

(8) Decrease the dimension of A from 2D to 1D.

(9) Repeat steps 5 to 8, N times if a higher scrambling de-

gree is required by the application.

After the scrambling process, the scrambled audio file R

is written in the same format, with the same sample rate and

number of bits per sample. Fig. 1(a) shows an audio wave

file, Fig. 1(b) shows a list of indices retrieved from the key

generation process described in section 4.2, Fig. 1(c) shows

the audio file scrambled before decreasing the dimension.

The length of the key is less than the length of the audio,

so the remaining values are inserted in row first order. The

black cell is out of range and will be discarded when the

dimension is decreased.

-0.0820

-0.1017

-0.1222

-0.1435

-0.1657

-0.1886

-0.2122

-0.2362

(a)

(1,3)

(3,1)

(1,1)

(2,3)

(1,2)

(2,2)

(b)

-0.1222� -0.1657� -0.0820�

-0.2122� -0.1886 -0.1435�

-0.1017� -0.2362�

(c)

Fig. 1 Audio Scrambling Process, (a) Original Audio, (b) List of New

Indices, (c) Scrambled Audio

4.2 Key generation process

The key generation process is used by the scrambling and

descrambling processes. It takes the value of M calculated

in section 4.1, and produces a list of indices L. The key gen-

eration process is based on 2D cellular automata and can be

described as follows:

(1) Create a CA with an M×M grid and a random initial

state configuration.

(2) Initialize to zero a status M×M matrix B.

(3) Run the Game of life rules (using Moore neighborhood

and a periodic boundary) for (NOG) generations start-

ing from the initial state configuration. Subsequent state

configurations are K1,K2, · · · ,KNOG.

(4) For k = 1,2, · · · ,NOG, if Kk [i, j] = 1 and B [i, j] = 0, add

(i, j) to the list of new indices L, and set B [i, j] to 1.

(5) Return L.

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

4 Alia Madain et al.

The number of generations (NOG) must not exceed the

number needed to scramble the whole audio file, in most ap-

plications a small number of generations is enough to get

a high scrambling degree (as shown in the experiments in

section 5.1), because the difference in the scrambling de-

gree decreases when the number of generations increases,

so there is little benefit from running the algorithm for too

many generations.

4.3 Descrambling Algorithm

The descrambling algorithm is the inverse of the scrambling

algorithm; it simply takes the scrambled audio file generated

by the scrambling algorithm and the initial configuration of

CA to return the original file. If the algorithm is repeated

or the number of generations is changed, then the algorithm

requires NOG and N. Note that the descrambling algorithm

can use the initial configuration to reproduce the key, and

K1,K2, · · · ,KNOG are not required. If no attacks or audio pro-

cessing operations were made to the scrambled file, the al-

gorithm returns a file identical to the original.

4.4 Measuring the Scrambling Degree

We have used the average scrambling degree measurement

proposed in [9] for image files to analyze the effect of dif-

ferent cellular automata types on audio scrambling. In order

to use it, two important things must be considered: first, the

audio file amplitude contains negative values and needs to

be normalized; second, audio and image files are different,

so the difference should be computed in a different way, as

shown in the equations below. Let P(i) denote the original

audio data, and N is the length of the audio file, then the

difference D for cell (i), is calculated as follows:

D(i) =
1

4
∑

í

[

P(i)−P(í)
]2

(2)

where (í) = {(i− 1),(i− 2),(i+ 1),(i+ 2)}. After comput-

ing the cell difference, the mean difference M for the audio

is calculated as:

M =
∑

N−2
i=3 D(i)

N− 4
(3)

Finally the scrambling degree SD is defined as:

SD =
M̀−M

M̀+M
(4)

Where M̀ is the mean difference of the scrambled file

and M is the mean difference of the original audio file; the

value of the scrambling degree in Eq. 4 ranges from −1 to

1, where higher values indicate better scrambling.

5 Experimental Results and Analysis

In this section, we study different types of CAs in terms of

audio scrambling, and we evaluate the robustness of the pro-

posed algorithm against data loss attack, focusing on the re-

lation between the algorithms robustness and the scrambling

degree. We also compare the algorithm with three different

algorithms.

The data set used to study the behavior of CAs contains

16 audio files with different waveforms. The resolution of

all the audio files used is 16 bit and the audios are in WAVE

format. Table 1 shows the details of the audio files. Those

numbered from one to eight are speech audio files; those

numbered from nine to sixteen are music audio files.

Although some of the audio files have multiple channels,

only one channel is used in the experiments.

Table 1 Details of Audio files used to study CA behavior

Audio file Duration Sample rate Bit rate Channels

(seconds) (Hz) (kbps)

1.wav 0.810562 16000 256 1

2.wav 9.87994 16000 256 1

3.wav 2.75594 16000 256 1

4.wav 3.95619 16000 256 1

5.wav 2.06294 16000 256 1

6.wav 1.63025 16000 256 1

7.wav 3.85844 16000 256 1

8.wav 2.32894 16000 256 1

9.wav 1.9805 44100 705 1

10.wav 1.83991 44100 705 1

11.wav 4.40367 48000 1536 2

12.wav 8.80733 48000 1536 2

13.wav 8.80733 48000 1536 2

14.wav 1.84154 44100 705 1

15.wav 2.18181 44100 1411 2

16.wav 0.901859 44100 1411 2

5.1 Correlation Analysis of the Number of Generations

(NOG)

The scrambling key in the proposed algorithm depends on

cellular automata, so the number of generations parameter is

vital to produce keys. Table 2 shows the experiments made

using the data set described. The experiments were made

with no repetition (N = 0). From Table 2 it can be seen that

the greater the NOG, the better the scrambling degree ob-

tained.

Based on the proposed algorithm, the scrambling degree

increases as the number of generations increases, because if

no more indices are specified by GOL rules the algorithm

will insert the remaining values in a row first order (step 7

of the scrambling algorithm in section 4.1), which will make

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Audio Scrambling Technique Based on Cellular Automata 5

Table 2 Different NOGs effect on scrambling degree

Audio Number of Generations (NOG)

file 1 5 10 15 20 25

1.wav 0.83620 0.92165 0.92573 0.92747 0.92875 0.92888

2.wav 0.86472 0.91528 0.92161 0.92549 0.92788 0.92876

3.wav 0.87451 0.93195 0.93663 0.93893 0.94077 0.94120

4.wav 0.78555 0.89342 0.90488 0.91776 0.92102 0.92423

5.wav 0.84423 0.90007 0.91566 0.91871 0.91884 0.91963

6.wav 0.81119 0.89137 0.89788 0.90219 0.90362 0.90404

7.wav 0.82025 0.90550 0.91556 0.92028 0.92228 0.92243

8.wav 0.80172 0.89939 0.90461 0.90673 0.90768 0.90909

9.wav 0.99794 0.99883 0.99885 0.99895 0.99898 0.99899

10.wav 0.99091 0.99468 0.99535 0.99574 0.99580 0.99586

11.wav 0.87958 0.92720 0.93791 0.94070 0.94394 0.94440

12.wav 0.90406 0.94644 0.95319 0.95558 0.95684 0.95765

13.wav 0.86702 0.90716 0.92831 0.93027 0.93052 0.93075

14.wav 0.87101 0.91189 0.91424 0.92479 0.92690 0.92691

15.wav 0.97422 0.98468 0.98687 0.98728 0.98743 0.98761

16.wav 0.88890 0.92236 0.93936 0.93952 0.93959 0.93966

the correlation between the samples higher and the scram-

bling degree lower, especially when there are gaps between

the indices specified by the key.

Scrambling 1.wav for one generation produces an au-

dio file scrambled with the degree 0.83620. By increasing

the number of generations to five, the scrambling degree

goes up significantly to 0.92165. Increasing the number of

generations to twenty, the scrambling degree increases to

0.92875. The difference between using one generation and

five is 0.08545 whereas the difference between five genera-

tions and twenty is 0.0071. The experimental results suggest

that the influence of changing the number of generations de-

creases gradually when the number of generations increases,

because when the key becomes longer, less values are in-

serted in order. The increase also stops when the length of

the key is equal to the length of the audio file or when the

whole audio file is scrambled.

In all the following experiments we use fifteen genera-

tions. Fig. 2 shows the test audio files scrambled for 15 gen-

erations with N = 0. It can be seen that the scrambled waves

have very different shape and form from their original.

5.2 Correlation analysis of neighborhood type

Although many different possible neighborhood types exist,

we have only tested von Neumann and Moore neighborhood

types.

Table 3 shows the scrambling degree obtained when the

audio files are scrambled using Moore and von Neumann

neighborhood types. The scrambling experiments use the

same key for both neighborhood types, and the scrambling

is not repeated (N = 0).

The Moore neighborhood provides significantly better

scrambling results than von Neumann neighborhood, this is

because the neighborhood effect applies to all cells in the

grid and many of the CA properties are strongly dependent

0 1

−0.5

0

0.5

(�� �������� ��	
��� �� (����	�

0 1

−0.5

0

0.5

(�� ������
� ��	
��� �� (��

0 1 2

−0.4

−0.2

0

0.2

(�� �������� ��	
��� �� (����	�

0 1 2

−0.4

−0.2

0

0.2

(�� ������
� ��	
��� �� (��

0 2 4

−0.5

0

0.5

(
� �������� ��	
��� ��

(11.wav)

0 2 4

−0.5

0

0.5

(�� ������
� ��	
��� �� (
�

0 0.5 1

−0.5

0

0.5

(�� �������� ��	
��� ��

(16.wav)

0 0.5 1

−0.5

0

0.5

(�� ������
� ��	
��� �� (��

Fig. 2 Scrambled wave plots of different audio files with NOG = 15

on the neighborhood [19]. Fig. 3 shows the result of scram-

bling 4.wav and 13.wav using different neighborhood types.

5.3 Correlation analysis of boundary condition

Table 4 shows the scrambling degree obtained when the au-

dio files are scrambled using periodic and null boundaries

with no repetition (N = 0) and NOG = 15. Generally the

periodic boundary gives a slightly higher scrambling degree

than the null boundary, but not always, because the bound-

ary condition affects only the cells on the edges of the grid.

The periodic boundary gives better randomness quality [10].

5.4 Correlation analysis of Lambda values

Table 5 shows different transition rules which we have cho-

sen to test their effect on audio scrambling. The table also

shows their rule numbers.

Table 6 shows the scrambling degrees obtained for dif-

ferent lambda values, in the experiments. No repetition was

used (N = 0). The results show that the complex behav-

ior of the Game of Life rule (GOL) which occurs around

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

6 Alia Madain et al.

Table 3 Scrambling degree when different neighborhood types are

used with NOG = 15

Neighborhood

Audio file von Neumann Moore

1.wav 0.92747 0.89216

2.wav 0.92549 0.89339

3.wav 0.93893 0.90888

4.wav 0.91776 0.87439

5.wav 0.91871 0.87036

6.wav 0.90219 0.84349

7.wav 0.92028 0.87767

8.wav 0.90673 0.87753

9.wav 0.99895 0.99826

10.wav 0.99574 0.99373

11.wav 0.94070 0.91001

12.wav 0.95558 0.93194

13.wav 0.93027 0.88261

14.wav 0.92479 0.88907

15.wav 0.98728 0.97899

16.wav 0.93952 0.90297

� 2 4

−0.5

0

0.5

��� ������� !�"#$%�& %$ �')*�"�

� 5

−0.1

0

0.1

�+� ������� !�"#$%�& %$

(13.wav)

� 2 4

−0.5

0

0.5

�,� -,��&+ #. !�"# %$ ��� /1���

Moore Neighborhood

� 2 4

−0.5

0

0.5

�.� -,��&+ #. !�"# %$ ��� /1���

von Neumann Neighborhood

� 5

−0.1

0

0.1

�#� -,��&+ #. !�"# %$ �+� /1���

Moore Neighborhood

� 5

−0.1

0

0.1

�$� -,��&+ #. !�"# %$ �+� /1���

von Neumann Neighborhood

Fig. 3 Audio files scrambled using different neighborhood types

λ = 0.2734 gives the highest scrambling effect. This result

could have been foreseen from Wolfram analysis of CAs,

but it is nice to see it confirmed.

5.5 Robustness experiments

In an effort to measure the algorithm robustness, we ap-

plied the data loss attack where we eliminated 1/3 of the

data samples of the data set audio files. Each audio file was

Table 4 Scrambling degree when different CA types are used

Boundary

Audio file Periodic Null

1.wav 0.92747 0.92587

2.wav 0.92549 0.92522

3.wav 0.93893 0.93758

4.wav 0.91776 0.91731

5.wav 0.91871 0.91690

6.wav 0.90219 0.90085

7.wav 0.92028 0.91932

8.wav 0.90673 0.90493

9.wav 0.99895 0.99893

10.wav 0.99574 0.99572

11.wav 0.94070 0.94023

12.wav 0.95558 0.95495

13.wav 0.93027 0.93007

14.wav 0.92479 0.92372

15.wav 0.98728 0.98737

16.wav 0.93952 0.93810

Table 5 The Lambda value and rule number of different transition

functions

Lambda Value (λ) Transition Function Rule No.

0.27340 f (0,3) = 1, f (1,2) = 1,

f (1,3) = 1, f equals zero

otherwise

GOL

0.30078 f (0,4) = 1, f (1,2) = 1,

f (1,3) = 1, f equals zero

otherwise

416

0.32812 f (0,4) = 1, f (1,2) = 1,

f (1,4) = 1, f equals zero

otherwise

800

0.41601 f (1,3) = 1, f (0,1) = 1,

f (0,2) = 1, f (0,3) = 1,

f (0,5) = 1, f (0,7) = 1,

f (0,8) = 1, f equals zero

otherwise

83156

0.47070 f (1,2) = 1, f (1,3) = 1,

f (0,1) = 1, f (0,2) = 1,

f (0,3) = 1, f (0,5) = 1,

f (0,7) = 1, f (0,8) = 1, f

equals zero otherwise

83188

scrambled twice, once with no repetitions (N = 0) and once

with five repetitions (N = 5), in order to show the relation

between the scrambling degree and the robustness of the al-

gorithm.

Fig. 4 shows the recovered waves of 1.wav and 12.wav

after data loss. The scrambling degree for 1.wav is 0.92747

when N = 0 and 0.93951 when N = 5. The scrambling de-

gree for 12.wav is 0.95558 when N = 0 and 0.96559 when

N = 5.

From Fig. 4 it can be seen that the structure of the recov-

ered wave is so similar to the original, especially when N = 5

(because with better scrambling the samples are distributed

in a way that breaks the correlation between samples), so

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Audio Scrambling Technique Based on Cellular Automata 7

Table 6 Scrambling Degree when using different transition rules and

NOG = 15

Audio Rule No.

file GOL 416 800 83156 83188

1.wav 0.92747 0.90355 0.90964 0.89675 0.89046

2.wav 0.92549 0.89740 0.90613 0.90563 0.89999

3.wav 0.93893 0.91107 0.91898 0.90940 0.90419

4.wav 0.91776 0.86127 0.88539 0.88648 0.88524

5.wav 0.91871 0.88793 0.89275 0.88076 0.87433

6.wav 0.90219 0.87829 0.88081 0.85902 0.84297

7.wav 0.92028 0.88667 0.89171 0.88442 0.88037

8.wav 0.90673 0.86287 0.88331 0.86251 0.86054

9.wav 0.99895 0.99835 0.99841 0.99852 0.99831

10.wav 0.99574 0.99276 0.99335 0.99435 0.99393

11.wav 0.94070 0.90653 0.91013 0.91485 0.91386

12.wav 0.95558 0.93144 0.93686 0.94175 0.93873

13.wav 0.93027 0.87874 0.88853 0.89457 0.89018

14.wav 0.92479 0.88041 0.88895 0.89209 0.89223

15.wav 0.98728 0.98169 0.98288 0.98439 0.98244

16.wav 0.93952 0.89533 0.90633 0.90861 0.91605

even if the data is lost the audio recovers most of its original

structure.

5.6 Comparison with previous schemes

The proposed scheme was compared to three algorithms pro-

posed in [14]: The cyclic displacement scrambling transfor-

mation (CDST), the complete binary tree’s inorder traver-

sal scrambling transformation (ITST), and the combination

algorithm. The parameters used in the experiments are the

same parameters used in [14] as follows: in the combination

algorithm k = 3, p = 5, and in CDST k = 3.

The speech audio files where sampled at 16000 Hz, while

the music files where sampled at 44100 Hz, 48000 Hz, re-

spectively. As shown in section 5.1 and section 5.5, achiev-

ing a high scrambling degree is dependent on setting the

number of generations and iterations, so we set the NOG to

15 and N = 6. Table 7 shows the results of the comparison.

Table 7 Comparing ASCA (proposed algorithm) with previous

schemes

Audio file ASCA ITST CDST Combination algorithm

Speech1.wav 0.92445 0.91933 0.92367 0.92335

Speech2.wav 0.87971 0.86153 0.87858 0.87924

Music1.wav 0.93523 0.92637 0.93398 0.93478

Music2.wav 0.91490 0.90825 0.91475 0.91476

The waveform of the audio after scrambling using the

ASCA is shown in Fig. 5. The scrambled waves do not show

any of the original audio structure, so no information about

the original file can be retrieved from them.

2 0.5

−0.2

0

0.2

345 67898:4; <4=> ?@ 3ABC4=5

2 5

−0.5

0

0.5

3D5 67898:4; <4=> ?@ 3AEBC4=5

2 0.5

−0.2

0

0.2

3F5 GF74HD;>I <4=> ?@ 345 CJ>:

N=0

2 0.5

−0.2

0

0.2

3I5 GF74HD;>I <4=> ?@ 345 CJ>:

N=5

2 0.5

−0.2

0

0.2

3>5 KLL4FM>I <4=> ?@ 345 CJ>:

N=0

2 0.5

−0.2

0

0.2

3@5 KLL4FM>I <4=> ?@ 345 CJ>:

N=5

2 0.5

−0.2

0

0.2

395 N>F?=>7>I <4=> ?@ 345 CJ>:

N=0

2 0.5

−0.2

0

0.2

3J5 N>F?=>7>I <4=> ?@ 345 CJ>:

N=5

2 5

−0.5

0

0.5

385 GF74HD;>I <4=> ?@ 3D5 CJ>:

N=0

2 5

−0.5

0

0.5

3O5 GF74HD;>I <4=> ?@ 3D5 CJ>:

N=5

2 5

−0.5

0

0.5

3M5 KLL4FM>I <4=> ?@ 3D5 CJ>:

N=0

2 5

−0.5

0

0.5

3;5 KLL4FM>I <4=> ?@ 3D5 CJ>:

N=5

2 5

−0.5

0

0.5

3H5 N>F?=>7>I <4=> ?@ 3D5 CJ>:

N=0

2 5

−0.5

0

0.5

3:5 N>F?=>7>I <4=> ?@ 3D5 CJ>:

N=5

Fig. 4 Recovered audio file after data loss attack with NOG = 15

6 Conclusions and Future work

A new scrambling technique for digital audio has been intro-

duced. The proposed scheme takes advantage of 2D cellular

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

8 Alia Madain et al.

P 0.5 1

−0.5

0

0.5

QRS TUVWVXRY ZR[\]^U_ ^]

(Speech1.wav)

P 0.5 1

−0.5

0

0.5

Q`S abUR_`Y\c ZR[\]^U_ ^]

(Speech1.wav)

P 2

−0.5

0

0.5

QbS TUVWVXRY ZR[\]^U_ ^]

(Speech2.wav)

P 2

−0.5

0

0.5

QcS abUR_`Y\c ZR[\]^U_ ^]

(Speech2.wav)

P 1

−0.1

0

0.1

Q\S TUVWVXRY ZR[\]^U_ ^] Qdef

sic1.wav)

P 1

−0.1

0

0.1

Q]S abUR_`Y\c ZR[\]^U_ ^] Qdef

sic1.wav)

P 5

−0.5

0

0.5

QWS TUVWVXRY ZR[\]^U_ ^] Qdef

sic2.wav)

P 5

−0.5

0

0.5

QgS abUR_`Y\c ZR[\]^U_ ^] Qdef

sic2.wav)

Fig. 5 Audio files scrambled using ASCA with NOG = 15

automata with complex behavior to achieve a high scram-

bling degree. The paper studies the effect of using von Neu-

mann neighborhood versus Moore neighborhood and the pe-

riodic boundary versus the null boundary. Five transition

rules with different Lambda values were tested. The pro-

cess is suitable for speech and music clips of different sizes

and no extra padding is needed. The descrambling process

is straightforward when the right key is available.

Experimental results suggest that the proposed technique

breaks the correlation of adjacent data samples effectively.

The relation between the scrambling degree achieved and

the robustness of the algorithm is also studied, the results

show that the algorithm is robust to data loss attack and the

robustness becomes better when the scrambling degree is

higher.

Some of the most popular CA types were studied in

terms of digital audio scrambling, but many more exists; fu-

ture plans include the extensive study of other CA types and

other possible combinations, and extending this scheme to

scramble video files.

Studying the best approach to extend the algorithm to

include multi-channel audio is also left for future work. This

extension can be done by treating each channel separately,

or by considering inter-channel dependencies.

Other future plans will include the use of this algorithm

as a part of watermarking, information hiding, fingerprint-

ing, and encryption applications.

Acknowledgements This work is partially supported by the Span-

ish Ministry of Science and Innovation under coordinated research

projects TIN2011-28260-C03-00 and TIN2011-28260-C03-02 and by

the Comunidad Autónoma de Madrid under research project e-madrid

S2009/TIC-1650

References

1. Yan W, Fu W, Kankanhalli M S (2008) Progressive audio scram-

bling in compressed domain. IEEE Transactions on Multimedia

10(6):960–968

2. Huang H C, Chen Y H (2009) Genetic fingerprinting for copyright

protection of multicast media. Soft Computing - A Fusion of Foun-

dations, Methodologies and Applications 13(4):383–391

3. Martı́nez-Noriega R, Nakano M, Kurkoski B, Yamaguchi K (2011)

High payload audio watermarking: Toward channel characterization

of MP3 compression. Journal of Information Hiding and Multimedia

Signal Processing 2(2):91–107

4. Chang F C, Huang H C, Hang H M (2007) Layered Access Control

Schemes on Watermarked Scalable Media. Journal of VLSI Signal

Processing Systems 49(3):443–455

5. Shang Z, Ren H, Zhang J (2008) A Block Location Scrambling

Algorithm of Digital Image Based on Arnold Transformation. Proc.

9th International Conference for Young Computer Scientists, Hunan,

China, pp 2942–2947

6. Jiping N, Yongchuan Z, Zhihua H, Zuqiao Y (2008) A digital image

scrambling method based on AES and error correcting code. Proc.

International Conference on Computer Science and Software Engi-

neering, Wuhan, Hubei, China, pp 677–680

7. Zhu L, Li W, Liao L, Li H (2006) A Novel Algorithm for Scram-

bling Digital Image Based on Cat Chaotic Mapping. Proc. Interna-

tional Conference on Intelligent Information Hiding and Multimedia

Signal Processing (IIH-MSP’06), Pasadena, CA, USA, pp 601–604

8. Xiangdong L, Junxing Z, Jinhai Z, Xiqin H (2008) A New Chaotic

Image Scrambling Algorithm Based on Dynamic Twice Interval-

Division. Proc. International Conference on Computer Science and

Software Engineering, Wuhan, Hubei, China, pp 818–821

9. Ye R, Li H (2008) A Novel Image Scrambling and Watermarking

Scheme Based on Cellular Automata. Proc. International Sympo-

sium on Electronic Commerce and Security, Guangzhou City, China,

pp 938–941

10. Abu Dalhoum A, Mahafzah B, Awwad A, Al-Dhamari I, Ortega

A, Alfonseca M (2011) Digital Image Scrambling Method Based On

Two Dimensional Cellular Automata: A Test of the Lambda Value.

IEEE Multimedia. doi: 10.1109/MMUL.2011.54

11. Li H, Qin Z (2009) Audio Scrambling Algorithm Based on Vari-

able Dimension Space. Proc. International Conference on Industrial

and Information Systems, Haikou, China, pp 316–319

12. Li H, Qin Z, Shao L, Zhang S, Wang B (2009) Variable Dimension

Space Audio Scrambling Algorithm Against MP3 Compression. In:

Hua A, Chang S (ed) Algorithms and Architectures for Parallel Pro-

cessing. Springer, Berlin, Heidelberg, pp 866–876

13. Li H, Qin Z, Shao L (2009) Audio Watermarking Pre-process Al-

gorithm. Proc. IEEE International Conference on e-Business Engi-

neering, Macau, China, pp 165–170

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

Audio Scrambling Technique Based on Cellular Automata 9

14. Chen G, Hu Q (2010) An audio scrambling method based on com-

bination strategy. Proc. International Conference on Computer Sci-

ence and Information Technology (ICCSIT), Chengdu, China, pp

62–66

15. Sarkar P (2000) A Brief History of Cellular Automata. ACM Com-

puting Surveys (CSUR) 32(1):80–107

16. Kier L, Witten T (2005) Cellular Automata Models of Complex

Biochemical Systems. In: Bonchev D, Rouvray D (ed) Complexity

in Chemistry, Biology, and Ecology. Springer, pp 237–301

17. Kier L, Seybold P, Cheng C (2005) Water as a System. In: Model-

ing Chemical Systems Using Cellular Automata. Springer, pp 39–55

18. Bonnet N, Matos M, Polette M, Zahm J, Nawrocki-Raby B,

Birembaut P (2004) A density-based cellular automaton model for

studying the clustering of noninvasive cells. IEEE Transactions on

Biomedical Engineering 51(7):1274–1276

19. Nishio H (2006) How Does the Neighborhood Affect the Global

Behavior of Cellular Automata. In: Yacoubi S, Chopard B, Bandini

S (ed) Cellular Automata. Springer, Lecture Notes in Computer Sci-

ence 4173:122–130

20. Shin S, Yoo K (2009) Analysis of 2-State, 3-Neighborhood Cellu-

lar Automata Rules for Cryptographic Pseudorandom Number Gen-

eration. Proc. International Conference on Computational Science

and Engineering (CSE’09), Vancouver, BC, Canada, pp 399–404

21. Wolfram S (2002) A New Kind of Science. Wolfram Media, USA

22. Langton C (1990) Computation at the edge of chaos: Phase transi-

tions and emergent computation. Physica D: Nonlinear Phenomena

42(1-3):12–37

23. Aleksić Z (2000) Artificial life: growing complex systems. In:

Bossomaier T, Green D (ed) Complex Systems. Cambridge Univer-

sity Press, pp 91–126

24. Gardner M (1970) Mathematical Games – The fantastic combina-

tions of John Conway’s new solitaire game “life”. Scientific Ameri-

can 223:120–123

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

