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Abstract Information retrieval algorithms have changed the way we manage and
use various data sources, such as images, music or multimedia collections. First, free
text information of documents from varying sources became accessible in addition to
structured data in databases, initially for exact search and then for more probabilistic
models. Novel approaches enable content-based visual search of images using com-
puterized image analysis making visual image content searchable without requiring
high quality manual annotations. Other multimedia data followed such as video
and music retrieval, sometimes based on techniques such as extracting objects and
classifying genre. 3D (surface) objects and solid textures have also been produced in
quickly increasing quantities, for example in medical tomographic imaging. For these
two types of 3D information sources, systems have become available to characterize
the objects or textures and search for similar visual content in large databases.
With 3D moving sequences (i.e., 4D), in particular medical imaging, even higher-
dimensional data have become available for analysis and retrieval and currently
present many multimedia retrieval challenges.

This article systematically reviews current techniques in various fields of 3D and
4D visual information retrieval and analyses the currently dominating application
areas. The employed techniques are analysed and regrouped to highlight similar-
ities and complementarities among them in order to guide the choice of optimal
approaches for new 3D and 4D retrieval problems. Opportunities for future appli-
cations conclude the article. 3D or higher-dimensional visual information retrieval is
expected to grow quickly in the coming years and in this respect this article can serve
as a basis for designing new applications.
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1 Introduction

Multidimensional visual information encompasses a wide set of data containers
ranging from images (2D), videos (2D plus time), to 3D surface models of objects, 3D
solid models such as tomographic medical images or 4D temporal series of volume
data. Images, volumes and videos are all part of multidimensional multimedia data.
However, a distinction is needed in order to separate the mature, well-established
2D image retrieval domain from the developing higher dimensional (3D, 4D, 5D)
retrieval domains. When a distinction between both data types is needed, the terms
low-dimensional visual information and high-dimensional visual information will be
used. In this work we use the term multidimensional information referred to n-D
visual data or objects with n equal or greater than two, including images, videos, 3D
models or 4D visual objects.

The amount of multidimensional data available has enormously increased in the
past years: e.g. the video hosting website YouTube,' founded in 2005, receives more
than 60 hours of new video every minute (in early 2012) [141]. Other domains, such
as medical imaging, produce an enormous amount of multidimensional information
every day [6]. Such large quantities of data are difficult to manually categorize for
further access or reuse. Whereas some tasks may be suitable for text-based retrieval,
either with structured or free-text queries (e.g., retrieval of press events or images of
particular geographical regions), other domains require specific retrieval paradigms
to perform an efficient search in large databases, where adding textual annotations
is not feasible or subjective and error-prone (e.g., feelings that are invoked by visual
data). This is the case of high-dimensional visual information, where understanding
and interpreting is time-consuming and not so intuitive: e.g., a 2D image can be
understood immediately without interaction, whereas a 3D volume or video requires
either sliding through slices or browsing a sequence through time. Figure 1 shows
examples of interfaces for viewing high-dimensional visual data. This also motivates
the use of computer-based approaches for analyzing high-dimensional data, due to
the limitations of displaying dimensions larger than three for human inspection.
The use of additional data together with visual—only information has proven to
be valuable for retrieval and classification purposes [33]. This extra information
is often included in the same container or file format: e.g. the DICOM? standard
enables the storage of metadata together with images, providing context to the visual
content [94, 123]. However, not all domains can deal with metadata to the same
extent, and its usefulness is strongly related to the application. E.g., in medical
information retrieval, age can be a very selective criteria for specific conditions and
diseases, but not for others.

The aforementioned challenges, namely the complexity of the content as well as
the enormous size of the data collections, show an urgent need for visual content-
based retrieval systems. In the past decade multidimensional information retrieval

http://www.youtube.com/, as of 3 May 2012.

2Digital Imaging and Communications in Medicine.
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(a) 3D Slicer showing Multi—Planar Rendering (MPR) and a
slicing view of ultrasound imaging (http://www.slicer.org/,
as of 3 May 2012).
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(b) OsiriX showing MPR and surface rendering of CT
(Computer Tomography) imaging for virtual endoscopy
(http://www.osirix-viewer.com/, as of 3 May 2012).

beyond 2D image retrieval has been attracting an increasing interest from the
research community [115, 121]. Visual 2D image retrieval was extended to higher
dimensions. The number of publications in these fields has grown from dozens of
papers in the year 2000 to hundreds by the end of 2010. A query with the keywords
3D retrieval, video retrieval and image retrieval in the publication search system
Scopus? clearly shows this trend for topics covering the “multidimensional” category
(see Fig. 2). The highest growth period for multidimensional visual information
retrieval research occurred around the year 2005 when important contributions were
published: the Princeton benchmark initiative for 3D objects [114], the first Shape

3http://www.scopus.com/, as of 3 May 2012.
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Fig. 2 Evolution of the number of articles found in Scopus for various queries containing the
keyword retrieval in the title, keywords or abstract. 100 % corresponds to the number of articles
found in 2010 for each category

Retrieval Contest (SHREC) [125] and comprehensive reviews of the literature on
3D object retrieval [15, 121]. This analysis can be limited by the maturity of the field:
i.e., once a domain is well-stablished, researchers may tend to use less often terms
that are redundant within this community.

In this article, a review of the high-dimensional visual information retrieval
domain is presented, describing the most important applications and techniques
found in the literature. The aim of this article is to find similarities among tech-
niques across domains to foster cross-domain synergies between applications and
techniques. The article provides a brief description of the most common methods
available to researchers that face a high-dimensional retrieval task classified by
data dimensionality rather than content type. In this sense, it is complementary
to previously published reviews of content and concept-based retrieval systems for
images [3, 28, 95, 111, 116], videos [88, 117] and 3D objects [15, 121].

The rest of this paper is organized as follows: Section 2 describes the review
methodology used for the paper, Section 3 lists the main applications for high-
dimensional visual information retrieval, and Section 4 summarizes the most widely
employed techniques and how they differ from the ones used for 2D image retrieval.
The specific challenges for the high-dimensional case and conclusions are explained
in Section 5.

2 Methods

A systematic analysis of the research literature was executed to retrieve the research
trends in the field and the most important papers being published in the last more
than ten years. The research-oriented search engine Scopus was chosen because of
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Table 1 Number of papers retrieved by the Scopus search engine for various queries and time
periods

Before 2001 2001-2005 After 2005 Total
(a) Query: 3D retrieval refined with shape, model or surface
Papers 125 514 1627 2266

(b) Query: visual information retrieval refined with 3D, 4D, 5D, multidimensional,image, volume
or volumetric data and not video

Papers 15 40 84 139
(c) Query: video retrieval refined with visual or content-based
Papers 534 959 1666 3159

the large amount of publications that it indexes, including but not limited to those
published by Elsevier, Springer, ACM (Association for Computing Machinery),
IEEE (Institute of Electronic and Electrical Engineers) and SPIE. Scopus might
include fewer publications than Google Scholar but in general the publications listed
are of high quality and the references are complete. Most important journals and
conferences dealing with multidimensional visual information retrieval are covered.
A set of queries were performed to find a total of 5564 relevant publications (see
Table 1). Abstracts were analyzed using an online keyword extraction tool* that
provides stop-word lists for the English language. Results were divided based on time
periods for which the growth pace of the number of publications is approximately
stable according to Fig. 2: publications before the year 2000, publications from the
year 2000 to 2005 and publications after 2005. This allows obtaining a more detailed
picture of what are the most important trends in the field. Similar methods have
previously been used to analyze the impact of publications in [122].

3 Applications

In this section, the main applications domain of multidimensional retrieval are
presented. Applications are regrouped based on the nature of their data as follows:
Section 3.1 deals with surface-based model retrieval, including watertight models
and polygon soup models. Section 3.2 takes into account full-support data, i.e.,
multidimensional data that can be defined as a solid volume in 3D or a hyper-
volume of higher dimensionality, also treating the case when images of two or more
dimensions are sampled in time, such as in general-purpose video or 3D+¢ medical
imaging.

3.1 Surface-based model retrieval

Model-based retrieval includes a set of applications requiring the ability to recognize
and retrieve 3D surfaces with similar shapes.

4http://www.tagcrowd.com/, as of 3 May 2012.
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Definition 1 Let A, B be two subsets of a Euclidean space (see Eq. 1). The subsets
are said to have the same shape if there is a rotation matrix R, a not null scaling factor
s and a displacement vector d that transform every point y € 3 into one point x € A
satisfying Eq. 2.

A, BCR", (1)

x =sRy +d (2)

This definition of shape is often too rigid, and more flexible definitions are used for
practical applications. Some research communities define shape from a topological
point of view [32, 41] whereas other applications stress the importance of partial
matching in shape analysis [91].

Results from the online text analysis tool in Fig. 3 show that research moves
from technology-centered studies [99, 129] based on general-purpose polygonal
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retrieval [12, 120] to application-focused research [17, 66, 97, 145]. Another remark-
able trend is that face recognition is a novel yet active topic in multidimensional
research, with a high number of publications in the past ten years.

By far the most frequent application for model-based retrieval is general-purpose
object retrieval without a clear real-life application described by the authors. Existing
model-based datasets are particularly well suited for general-purpose applications
where the ground truth consists of widely accepted categories (e.g., people, animals,
buildings, etc.) [114]. On the other hand, it is often difficult to find publicly available
datasets specific to a certain topic, where most research groups evaluate only their
own datasets [41], as Bustos et al. describe in [15]. Some of these topic-specific, real-
life applications for model-based retrieval include, but are not limited to:

— face recognition [83, 109, 132, 144];
— retrieval of pieces for industry processes [23, 26, 41];
— retrieval of artistic and architectural objects [66, 113].

Illustrations of the above mentioned applications are depicted in Fig. 4.

3.2 Full-support retrieval

Surface-based model retrieval deals with external aspect of objects, specifically with
concepts like shape, structure or topology. In contrast, some applications require
knowledge of the internal aspects of visual data, dealing with concepts like texture or
density. These applications are covered by full-support data, which describe objects
across all possible dimensions.

The concept of full-support data can be described using signal processing concepts
such as the intrinsic dimension of a multiple variable signal [13]. The intrinsic
dimension of an N-variable signal is the minimum number M of variables needed
to represent the signal.

Definition 2 The intrinsic dimension M of the signal f (see Eq. 3) is the smallest
number for which the relation in Eq. 4 is true for all x, for some M-variable function
gand M x N not null matrix A.

f&) = fl,x,... xN), (3)
fx) = g(Ax) 4)

In this section we consider the full-support case, so when rank(A) = N, with N >
3, meaning signals requiring at least 3 variables to be indexed are described by the
smallest possible number of variables.

Results from queries shown in Table 1b and ¢ were analyzed in order to extract
the most frequent applications. A further distinction can be made based on the
nature of the variables. The subset of applications where all variables are referring to
spatial dimensions is described in Section 3.2.1 whereas the applications with intrinsic
dimension equal or greater than 3 containing at least one variable referring to time
are considered in Section 3.2.2.
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Fig. 4 Examples of
surface-based retrieval
applications

(a) Face recognition [145].

(b) Retrieval of mechanical pieces for industrial
processes [28].

(c) Retrieval of architectural objects [115].

3.2.1 Spatial-only full-support data

Although the extension from 2D images to 3D might appear intuitive, acquisition
methods and applications have strongly limited the spread of retrieval techniques for
this type of data as shows the number of publications on the topic (see Table 1b). Due
to the opacity of matter, optic acquisition is often not possible for these applications,
so most of the techniques used for extracting the matter properties from within a
volume are those capable of showing an insight into matter, such as X-ray, magnetic
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resonance and ultrasound imaging or 3D confocal microscopy. This list of techniques
is enough to justify why the most frequent application for 3D full-support retrieval
is medical imaging, as it can be seen in the tag cloud from Fig. 5, where the keyword
medical is among the most frequent terms found in the texts.

Applications where full-support information is used for retrieval are the following:

— Medical image retrieval for computer-assisted diagnosis with a specific clinical
application [35].

— General purpose medical image retrieval for PACS (Picture Archival and Com-
munication System) browsing [11, 57, 73].

Retrieval and classification techniques are closely related, since both often have iden-
tical feature-extraction steps; sometimes classification is achieved after a retrieval
process. Retrieval has been defined as a classification task between relevant and not
relevant (usually without training data), for instance in the Binary Independence
Retrieval model [96]. For this reason a growth of the use of full-support texture
would make it possible to find retrieval systems based on existing classification-
based applications. E.g., in the geology field, several classification applications have
been proposed [53, 55, 69] and retrieval applications may evolve from these as the
techniques related to visual description of geological and other three-dimensional
data spread within the related community.

3.2.2 Space and time volumetric data

In concordance with the explosion of user—generated video content mentioned in
Section 1, there have been enormous efforts for video retrieval research in the past
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Fig. 5 Keywords found in 139 abstracts from full-support retrieval publications
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years. Video retrieval, as shown in Table 1c, is by far the subtype of multidimensional
retrieval that received the highest attention also thanks to the availability of large test
collections created in the TRECVID benchmark.

As can be seen in Fig. 6, video retrieval often focuses on the understanding of the
semantics and syntactics of visual information to provide a way of indexing videos [4].
This includes scene classification and shot boundary detection [84], areas where big
efforts where made in the 1990’s [47, 60]. With spoken text, videos also have a
possibility to extract semantic information from the sound. The most common appli-
cation for video retrieval is large-scale audiovisual collection management [92, 135].
Evaluation of video retrieval is also very active and standardized, with important
contributions from TRECVID,’ videoCLEF [81, 82], and MultimediaEval.®

4 Techniques for visual information retrieval

Efficient visual information retrieval requires facing two challenges: on the one
hand the problem of accurately describing the information encompassed in a visual
container is tackled by using computer vision and image processing, also known as
feature extraction. On the other hand the problem of dealing with large amounts
of complex information for achieving fast and accurate results that are relevant
to the query is approached by using machine learning and information retrieval
techniques. Figure 7 contains an overview of a generic visual information retrieval
system, distinguishing the visual description phase and the information retrieval step.

Visual information can be retrieved in different ways. In some domains, it is
possible to define categorical elements that enable description and retrieval: e.g.,
a film can be described in terms of the genre (comedy, drama, science-fiction, etc.).
Some domains require retrieving documents without attending to categories, but to
similarities. E.g., a film can be described in terms of its length in minutes or aspect
ratio, and therefore similar films would have a similar length and aspect ratio. This
idea is further extended using the concept of feature vectors.

Shttp:/trecvid.nist.gov/, as of 3 May 2012.
Ohttp://www.multimediaeval.org/, as of 3 May 3012.
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Fig. 7 Overview of a generic visual information retrieval system. The high-dimensional visual data
from the retrieval corpus (dashed line) is processed and used as training data for supervised or
unsupervised machine learning methods. The high-dimensional visual data from the query (full line)
is processed in a similar way but is not involved in the learning process

Definition 3 Let fi, f>,.... f, € R be n numerical values representing n features
or characteristics that apply to visual information elements or documents. Then, a
feature space F € R” can be constructed for all the valid values of fi, fa,..., fu
where each dimension is related to one of the features. A visual information
element or document X can then be mapped to a point in the feature space, the
point represented by the values of the features f; = x;, f, = x», ..., f, = x,, for the
document. The vector X = (x1, X2, ..., x,) € F C R" is called feature vector of the
document X.

Two documents X and Y with feature vectors x and y are said to be similar if
d(x,y) < T is true for some distance measure d and a given threshold 7.

In general, not only distances are used as similarity measures, other metrics and
(dis-)similarity measures can be used attending to the type of features used and the
desired properties of the retrieval system.

Techniques for defining feature vectors out of visual content in high dimensional
data are further explored in Section 4.1, the description of similarity, distance
measures and other information retrieval techniques are outlined in Section 4.2
and methods for fusing several retrieval techniques and feature vectors as well as
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metadata is explained in Section 4.3. Finally, Section 4.4 deals with the representation
challenges for high-dimensional visual information.

4.1 Visual information description

There are various approaches for describing visual information in multidimensional
data. The choice of one or another is often related to the application of the retrieval
system. For instance, for machine parts retrieval shape is more important than
texture, and therefore information extraction methods are focused on shape and
surface quantification. However, the main distinction among methods is whether
they are 3D-native or they use a divide and conquer approach to multidimensionality,
working on lower dimension spaces and aggregating this information later on, e.g.,
analyzing 3D-images slice by slice.

4.1.1 High dimensional approaches

In this section we consider methods that obtain information from all dimensions
simultaneously: for instance, methods based on mapping properties of a 3D model
onto a 3D sphere but not those that map data onto a planar surface; similarly, we
consider high dimensional approaches that analyze images computing features in
3D neighborhoods as opposed to 2D neighborhoods. A distinction is made between
the techniques that involve shape or surface information and those that also include
volumetric features such as 3D texture.

Shape description From very simple statistics to complex topological graphs, shape
is widely used for 3D retrieval, since object matching is also one of the clearest
applications. Table 2 shows a description and classification of popular methods.

Full-support data description Both volumetric images and videos contain infor-
mation as a series of images, sampled in space and in the case of videos, also in
time. Despite the similar nature of information, different approaches are often used.
For instance, some techniques are tightly related to video, where there has been a
big effort by the Motion Picture Expert Group (MPEG) in finding a multimedia
information description model with the MPEG-7 standard; whereas visual pattern
description in the field of spatial—only information, often known as solid or full-
support texture [Depeursinge et al., Three-dimensional solid texture analysis and
retrieval in biomedical imaging: review and opportunities, unpublished, 104], has
been approached in other ways. A summary of common full-support description
techniques is shown in Table 3.

4.1.2 Low dimensional approaches

Due to the complexity of the multidimensional visual information, the high dimen-
sional description task is often reduced to multiple 2D feature extractions. For
instance, a 3D model can be described by view-based techniques, i.e., a set of 2D
images are computed based on views of the object from various perspectives. By
reducing the dimensionality, common 2D-descriptors can be used, often at the cost
of missing a complete characterization of the object unless the number of views grows
sufficiently. Table 4 lists some low-dimensional techniques.
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Table 2 Shape description methods in 3D
Methods Explanation Examples
(a) Point-based methods

Distance distributions Probability distribution of distances [65,98,99]

Shape histograms

Geometric moments

Spherical harmonics,
raycast descriptors

(b) Surface-based methods
Point signatures

Extended Gaussian image

between points sampled on the
surface of an object.

The volume that the object fills is
divided in bins (radial divisions,
angular divisions, both, or other
divisions), the object is described
by the histogram of occurrences
according to these bins.

The object is considered a random
process of 3 variables, described
in terms of statistical moments.

The object is described by
evaluating the intersection points
with a predefined set of rays
casted from the surface of a
sphere containing the object.

The object is sampled on its surface
and to each point a signature
describing the local curvature
of the surface is assigned.

The object is placed inside a
Gaussian sphere, and a histogram
is computed from the intersection
with the sphere of the normal vec-
tors on the surface of the object.

(c) Topology and volume-based methods

Topological and skeleton
based descriptors

The object is described in topolo-
gical terms according to the
relationships of its subparts. A
skeleton of a volumetric model
might be generated as a descriptor
of the object.

[7,120]

[42, 110]

[62, 110, 128]

[24,25]

[51,134]

[63,119]

4.2 Information retrieval

A retrieval system needs to be able to provide relevant documents to a query
based on the concept of (visual) similarity. Although being a critical step, visual
description (or visual features) is not enough for achieving a relevant versus non-
relevant classification or to rank documents according to visual similarity. The visual
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Table 3 Full-support description methods in 3D

Methods Explanation Examples

(a) Geometry-based methods
Textons, texels Full-support information is described relying [70, 130, 131]
on the assumption that the observed
pattern is constituted by elementary units,
called textons or texels, repeated with
varying spatial distributions, sizes and

orientations.
Measures from binarized By binarizing the images, higher-level [72,100-102]
images geometric measures can be extracted

from the volumes, such as uniformity,
granularity, volume, surface and others.

(b) Spectral-based methods
Fourier analysis The information is approximated by a [54,76, 80]
linear combination of basis functions in a
given direction. In order to have local
information of the data, Fourier analysis
requires that the transformation is applied
in a window around the interest point.

Filter-based methods Instead of using the windowed Fourier [2,11, 16, 57, 80,
transform, local spectral properties are 90, 108]
obtained by convolving the information
signal with a given template. The template
or filter is a function of limited support
with given direction, scale and phase
properties. These functions can be tailored
to detect specific features: such as edges

or corners.
Multiscale analysis Multiscale analysis can be achieved by a [3, 50,57, 69, 83,102,
filterbank of templates at different scales 106, 113, 141, 143,
organized in a pyramid. One of the most (Depeursinge et al.,
common multiscale approaches is the Three-dimensional solid
Wavelet Transform (WT), but other filters  texture analysis and
or templates can be used to describe retrieval in biomedical
multidimensional patterns. imaging: review and
opportunities,
unpublished)]
(c) Statistical and stochastic methods
Co-occurrence methods Statistical measures based on the co- [11,18,21,22,51,
occurrence between the gray or color 65, 75,78, 80, 125]
values of pairs of pixels at predefined
relative positions.
Run-length methods Run-length is an encoding method that [74,75, 136-138]

describes data by computing the number of
consecutive repetitions of the same value.
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Table 3 (continued)
Methods Explanation Examples

In multidimensional data, a run-direction
is first defined, and the number of conse-
cutive voxels with the same value is
computed. With this description, higher-
level statistical measures are computed.

Local Binary Patterns Local Binary Patterns (LBP) compute the [44, 45, 56, 103, 105]
statistics of the spatial organization of
voxels on the surface of (hyper-) spherical
neighborhoods of the voxels. They are
gray-scale invariants, and since they
characterize spherical frequencies they
are related to spherical harmonics.

Markov Random Fields 3D Gaussian Markov random fields encode [40, 106]
the relationships between values of voxels
in volumetric spherical neighborhoods.

(d) Video-specific methods
Compressed domain Exploiting the compression features [90, 126]
descriptors to compose a feature vector for video
comparison. For instance: the Discrete
Cosine Transform (DCT) coefficients
or motion vectors derived from coding
standards such as MPEG-2 or H.264.

MPEG-7 descriptors MPEG-7 Visual description tools include the [43, 58, 90, 115, 126]
visual basic structures (such as description
tools for grid layout, time series, and spatial
coordinates) and visual description tools
that describe color, texture, shape, motion,
localization and faces.

description step in a retrieval system consists of finding a set of features or descriptors
that are meaningful for the retrieval purpose: i.e., that can code the differences and
similarities among the items to be retrieved. Once these features have been obtained,
the final step involves a decision-making process to find a mapping that aggregates
the information of the visual descriptors to a class or a ranking. To achieve this, two
strategies can be used: defining of (dis-)similarity measures and/or using machine
learning methods on training data.

When using similarity or dissimilarity measures, training data is not always
required for the system to work. It can perform retrieval directly on the data set
by sorting the items according to the chosen (dis-)similarity measure with respect to
the query item. One of the the simplest and still most frequently used techniques
is the k—nearest neighbor (kN N) search, where the retrieved items consist of the k
documents closest to the query item in the feature space. kNN works well if several
local groupings or clusters of documents/objects exist in the feature space without
very clear class boundaries. The definition of closest strongly depends on the distance
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Table 4 Low dimensional methods

Methods Explanation Examples

Spin Images By defining a set of normal vectors to [10,29, 37]
sampled points on the surface of the object,
a 2-dimensional histogram is defined by
projecting the object points in a neighborhood
of the sample point onto a plane defined
by the vector.

Silhouettes and depth The objects are described by several 2D images [8, 18,22, 86]
images corresponding to the views from a fixed number
of points. If the distance information is kept then
the image is called depth-image, whereas if the
distance information is discarded, the resulting
image is a binary silhouette.

Slice or frame The volume is described by individually processing [35, 48]
based each of the slices or frames, or a selection of them.
For instance, a compressed video can be described
by the features that describe each of the
so-called keyframes.

metric used. Most (dis-)similarity measures are based on computing the Euclidean
distance between two elements in the feature space. For example, let the query item
QO be represented by the N-dimensional feature vector fQ = ( le, sz, ce f,g) and
an item i in the dataset be represented by the feature vector £ = (fi, fi, ..., fi),
then a dissimilarity measure based on the Euclidean distance can be defined as

digp= \/(le — 2 (2= 2+ + (f — fi? Other distance measures are
often used instead of the Euclidean distance, according to the desired properties of
the measure or the specific characteristics of the feature vector,e.g, the Mahalanobis
distance, the earth mover’s distance or histogram intersection. Therefore, there has
been much interest in comparing distance metrics for this purpose [38, 108].

Machine learning methods are also very popular in the information retrieval
step as shown in Fig. 7. A machine learning method requires training data as a
previous experience in order to accurately predict the relevance of the items for the
query. Machine learning methods can be classified as supervised or unsupervised,
depending on whether ground truth was available during the training.

From a classification point of view, supervised methods try to find the best
boundaries between classes by making decisions knowing the labels assigned to a
given training set [78]. One of the most frequently found methods in supervised
learning are Support Vector Machines (SVM) [21] that also lead to best results
in many visual information retrieval benchmarks [93]. Another trend in supervised
learning are relevance feedback methods, where the retrieval system evolves by using
the manual feedback from the user [59, 135].

Representation of complex concepts with low-level features as presented in
Section 4.1 and human-understandable high-level semantic concepts. Various tech-
niques try to reduce this gap, either using machine learning methods or aggregation
of features into higher level features. A relatively recent trend among machine
learning methods is the bag-of-words approach, which extends a concept from text
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retrieval to the visual information retrieval field. Bag-of-words or bag-of-visual-
words attempt to learn concepts from the features, clustering the feature space into
densely populated regions that might represent visual concepts in the images. The
histogram of visual words is subsequently used as a descriptor of a volume or part
of it [48, 139]. Bag-of-words can be considered unsupervised during the clustering
phase, and supervised if the features were obtained using a supervised machine
learning method.

4.3 Fusion of descriptors and retrieved elements

As seen in Section 4.1, a visual information element can be described by different
types of features. Moreover, some domains use valuable metadata that can sig-
nificantly improve retrieval efficiency. In Section 4.2, some approaches to retrieval
have been introduced. It is therefore clear that on the one hand, some features might
be better suited for some retrieval applications than others; and on the other hand,
some information retrieval techniques might provide better, faster or more accurate
results than others. However, some applications might benefit from a combination of
techniques. E.g., results can significantly improve when integrating clinical data into
content-based image retrieval, [33, 146]; in the video analysis domain, multimodal
approaches’ have proven to be more effective than unimodal approaches [5, 67, 118].
These situations are dealt by using fusion techniques.

Fusion techniques are often classified into early and late fusion. Based on the
definitions given by Snoek et al. [118], early and late fusion can be defined as follows:

Definition 4 (Early fusion) Fusion scheme that integrates unimodal features before
making decisions such as classification, concept-learning, retrieval.

Definition 5 (Late fusion) Fusion scheme that first reduces features to separately
make decisions (classes, scores, rankings, etc.), then these are integrated.

In general, the term early fusion refers to the combination of various types of
features into a single descriptor and late fusion refers to the combination of various
lists of retrieved documents (runs) into a single, ranked list of elements.

Fusion of various sources of information can be triggered within the retrieval
system by using query expansion techniques, which modify the original query based
on available documents in the database or given rules.

Data fusion techniques, together with query expansion, have been widely used in
benchmarking events like ImageCLEF [31] and TRECVID [27, 39, 133].

4.3.1 Early fusion approaches

Early fusion techniques combine descriptors in order to construct a higher dimen-
sionality feature space, where all relevant features are present. The major disadvan-

7In video analysis, multimodality refers to the use of multiple information sources for the same
document: audio, text and visual information. This concept is easily generalized for other domains,
for instance in medical imaging, visual information and metadata included in the DICOM headers.
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tage of this approach is the curse of dimensionality: as the the dimensionality of the
feature space increases the density of elements in the space is reduced, scattering
meaningful clusters of instances. To solve this problem, various feature selection,
feature normalization [46] and feature weighting [36, 142] schemes have been used.

4.3.2 Late fusion approaches

Diversity among late fusion techniques is much broader than among early fusion
approaches. Late fusion includes every technique that combines outputs of various
systems into a single, sorted list of documents. Fusion techniques can be regrouped
in three subcategories:

Rank-based: items are combined attending to their position in each of the
previous lists of documents, either by intersection, union or
another combination rule. These techniques often require re-
ordering rules.

Score-based: items are combined attending to their relevance score, similarity
or distance to the query item. These techniques require normal-
ization of relevance scores among all systems.

Probability-based: items are assigned a score based on the probability of relevance,
according to a trained fusion system [85]. These techniques
require training queries with corresponding ground truth (rel-
evance judgements).

A specific review on rank, score and probability-based fusion techniques by
Donald and Smeaton [39] compares the performance of various techniques on
TRECVID collections.

4.4 Data representation

Human intuition is often limited to three dimensions. Representation and under-
standing of higher dimensional data requires further knowledge and training. This
limitation increases the difficulties faced by visual information retrieval systems at
the result representation stage. Different strategies have been proposed to overcome
this challenge, which can be grouped into the following categories:

Projection into lower dimensional space(s) Similar to the view-based techniques
(see Section 4.1.2), visual information is projected into one or more lower di-
mensional spaces, often with samples at one of the discarded dimensions. These
techniques are well known in the audiovisual domain [127], where audio information
is often discarded for presentation and time is used as a sampled dimension: e.g.
representation of a video by a series of thumbnails.

Interaction and virtual reality Discarding one of the dimensions is often not easily
possible, or there is no clear dimensionality that can be discarded a priori. In these
cases, interactive techniques have been proposed to enable or browse dimensions
according to users’ needs. These methods are widely used in the medical domain,
with virtual reality systems [52] or slice-browsing [34].
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Fig. 8 Combination of data representation techniques in visual retrieval systems. Interactive slice-
browsing and false color on the left pane and false color and transparency on the right pane.
Source: [34]

Addition of false visual attribute(s) When information about non-visual character-
istics of high dimensional elements are needed, false visual attributes can be used.
E.g.: transparency or false color have been widely used in volume rendering to
represent concepts such as density or heat. Medical imaging makes often use of
volume rendering [34] and false color to represent various anatomical structures and
regions.

Real-life systems often implement several methods separately or combined, in
order to adapt to the users’ workflow. For instance, the system shown in Fig. 8 uses
false visual attributes on the right pane and interactive slice-browsing on the left
pane.

5 Conclusions and challenges ahead

In this paper a comprehensive review of the state of the art in high-dimensional
visual information retrieval is presented. By systematically selecting and analyzing
the publications of the past more than ten years in this field using SCOPUS, four
major areas of interest were found: video retrieval as the most popular among all
high-dimensional visual information retrieval applications; face recognition that is
quickly gaining interest for its applications in the security industry and where 3D
information has a clear added value over 2D; surface-based retrieval applications that
include machinery retrieval of objects and related applications; and finally medical
image retrieval that is by far the most popular application in spatial—only volumetric
(often 3D texture) retrieval.
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High-dimensional visual information retrieval has started solving some of the
challenges regarding descriptors and machine learning in the domain. However, it
still faces many challenges in terms of usability and scalability. High-dimensional
visual information is a very large and complex data source. The main challenges are
related to the difficulty of dealing with large datasets of very dense data. Feature
extraction is time consuming and often produces a large number of visual descriptors.

A major challenge in visual information retrieval is related to the complexity of
the data, which makes it difficult to find a small set of features that can accurately
describe the documents. However, having a too large set of features will cause most
basic machine learning methods such as k-NN to fail, due to the well-known curse
of dimensionality [61]. This is one of the reasons for the bag-of-words approach
attracting much interest, since it creates clusters of features that are relevant to the
dataset defined by lower-level features. This lower dimensional set of features is
based on the visual descriptors actually occurring in the data and allows for better
distance measures and machine learning to be employed.

Research in high-dimensional visual information retrieval can profit from a closer
collaboration among researchers. One of the most-common problems found in this
field is the lack of publicly available datasets with annotated ground truth that can
be shared by various research groups and therefore serve as baseline comparison
for retrieval techniques. Benchmarking initiatives such as SHREC [125] in the field
of shape-based retrieval or ImageCLEF [71] in the field of 2D image retrieval can
become a powerful tool to create synergies among research groups to compare the
various approaches and select best techniques for future applications.

Challenges in the medical field and on 3D solid textures are also multiple.
Whereas 3D objects have the entire object information being relevant for retrieval
in the case of 3D tissue types, in biomedicine, detection rather than full retrieval
seems important as the volumes of interest relevant for retrieval are often very small
and contain less than 1 % of the volume to be analyzed. Detecting these regions
of interest requires training data annotated by experts, a difficult task and often
expensive as well. Based on a first detection step, then retrieval of similar volumes or
cases could be performed. Whereas 3D surface models can be visualized easily, 3D
texture is already hard to display and most often several views are required, as shown
in Fig. 1. Higher dimensional data will get even harder and new visualization methods
need to be developed, for example to highlight abnormalities in ten energy levels of
a 3D dual energy CT (Computer Tomography) of one patient, where visualization is
far from trivial.

In general, retrieval from data in more than three dimensions can be regarded
as one major challenge for the future. 3D cinema has already started and in
medicine a large variety of imaging techniques produce more than 3D data such
as PET/CT (Positron Emission Tomography / Computer Tomography) images,
PET/MRI (Positron Emission Tomography / Magnetic Resonance Imaging) images
or dual energy scanners. This will again increase the volume of data and will require
data reduction before any retrieval can be attempted. Using approaches similar to
visual words can help but also the basic descriptors will need to be adapted to
multiple dimensions. Simple descriptors such as co-occurrence matrices are easy
to adapt apart from the fact that an extremely large amount of data is being produced
but for other descriptors e.g., wavelets) the formulation and usefulness beyond 3D
might not be as trivial.
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This article reviewed the literature on high-dimensional visual retrieval tech-
niques. It can be shown that although video retrieval has been most popular over the
past ten years, there are now many other developments, ranging from surface-based
retrieval methods to solid 3D texture. Even higher dimensional data now becomes
increasingly common, such as 3D cinema (3D plus time equals 4D) and also in the
medical field where 4D image series become standard and where several volumes
of the same patient can be produced combining CT and MRI or creating multiple
energy images of CTs of the same patient. There are many challenges that retrieval
applications will need to deal with in the future such as combining detection of
regions of interest, dealing with computationally expensive analyses, and extremely
large feature spaces. Visual user interfaces also need to be adapted as already 3D
solid texture is hard to visualize and as dimensionality increases this will become
hard. The techniques described in this article give an idea on what was done for past
problems and how this can be employed to future challenges as well. This should
allow to select techniques well for a problem at hand and compare new approaches
to strong baselines of existing techniques.

Acknowledgements This work was partially supported by the Swiss National Science Foundation
(FNS) in the MANY project (grant 205321-130046), the EU 7th Framework Program in the context
of the Khresmoi project (FP7-257528), and the Center for Biomedical Imaging (CIBM).

References

1. Ahmed MN, Farag AA (1996) 3D segmentation and labeling using self-organizing Koho-
nen network for volumetric measurements on brain CT imaging to quantify TBI recov-
ery. In: Proceedings of the 18th annual international conference of the IEEE engineering
in medicine and biology society, EMBS 1996, vol 2. Bridging Disciplines for Biomedicine,
pp 738-739

2. Akbari H, Yang X, Halig LV, Fei B (2011) 3D segmentation of prostate ultrasound images
using wavelet transform. In: Medical imaging 2011: image processing, vol 7962. SPIE, p 79622K

3. Akgiil C, Rubin D, Napel S, Beaulieu C, Greenspan H, Acar B (2011) Content-based image
retrieval in radiology: current status and future directions. J Digit Imaging 24(2):208-222

4. Amir A, Basu S, Iyengar G, Lin CY, Naphade M, Smith JR, Srinivasan S, Tseng B (2004)
A multi-modal system for the retrieval of semantic video events. Comput Vis Image Underst
96(2):216-236

5. Amir A, Berg M, Chang SF, Hsu W, Iyengar G, Lin CY, Naphade M, Natsev A, Neti C, Nock
HJ, Smith JR, Tseng B, Wu Y, Zhang D (2003) IBM research TRECVID-2003 video retrieval
system. In: Proceedings of the TRECVID 2003 conference

6. Andriole KP, Wolfe JM, Khorasani R (2011) Optimizing analysis, visualization and naviga-
tion of large image data sets: one 5000-section CT scan can ruin your whole day. Radiology
259(2):346-362

7. Ankerst M, Kastenmiiller G, Kriegel HP, Seidl T (1999) 3D shape histograms for similar-
ity search and classification in spatial databases. In: Giiting R, Papadias D, Lochovsky F
(eds) Advances in spatial databases. Lecture notes in computer science, vol 1651. Springer
Berlin/Heidelberg, pp 207-226

8. Ansary T, Vandeborre JP, Mahmoudi S, Daoudi M (2004) A bayesian framework for 3D
models retrieval based on characteristic views. In: 3DPVT 2004 proceedings of 2nd international
symposium on 3D data processing, visualization and transmission, 2004, pp 139-146

9. Antel SB, Collins DL, Bernasconi N, Andermann F, Shinghal R, Kearney RE, Arnold DL,
Bernasconi A (2003) Automated detection of focal cortical dysplasia lesions using computa-
tional models of their MRI characteristics and texture analysis. Neurolmage 19(4):1748-1759

10. Assfalg J, Bertini M, Bimbo A, Pala P (2007) Content-based retrieval of 3D objects using spin
image signatures. IEEE Trans Multimedia 9(3):589-599

11. Baum KG, Helguera M, Krol A (2008) Fusion viewer: a new tool for fusion and visualization of
multimodal medical data sets. J Digit Imaging 21(1):S59-S68

@ Springer



560

Multimed Tools Appl (2014) 69:539-567

12.

13.
. Bhalerao A, Reyes-Aldasoro C (2003) Volumetric texture description and discriminant

15.

16.

17.
18.
19.

20.

21.

22.

23.

24.

25.
26.

27.

28.

29.

30.

31.

32.

33.

34.

Benedens O, Busch C (2000) Towards blind detection of robust watermarks in polygonal
models. Comput Graph Forum 19(3):199-208
Bennett WR, Davey JR (1965) Data transmission. McGraw-Hill

feature selection for MRI. In: Moreno-Diaz R, Pichler F (eds) Computer aided systems
theory—EUROCAST 2003. Lecture notes in computer science (LNCS), vol 2809. Springer
Berlin/Heidelberg, pp 573-584

Bustos B, Keim DA, Saupe D, Schreck T, Vranic DV (2005) Feature-based similarity search in
3D object databases. ACM Comput Surv 37(4):345-387

Cai W, Liu S, Wen L, Eberl S, Fulham MJ, Feng D (2010) 3D neurological image retrieval with
localized pathology-centric CMRGlc patterns. In: 17th IEEE international conference on image
processing, ICIP 2010, pp 3201-3204

Chang KI, Bowyer KW, Flynn PJ (2006) Multiple nose region matching for 3D face recognition
under varying facial expression. IEEE Trans Pattern Anal Mach Intell 28(10):1695-1700

Chen DY, Tian XP, Shen YT, Ouhyoung M (2003) On visual similarity based 3D model
retrieval. Comput Graph Forum 22(3):223-232

Chen W, Giger ML, Li H, Bick U, Newstead GM (2007) Volumetric texture analysis of breast
lesions on contrast-enhanced magnetic resonance images. Magn Reson Med 58(3):562-571
Chen X, Murphy RF (2004) Robust classification of subcellular location patterns in high resolu-
tion 3D fluorescence microscope images. In: 26th annual international conference of the IEEE
engineering in medicine and biology society, EMBC 2004, vol 1, pp 1632-1635

Chen Y, Zhou XS, Huang T (2001) One-class svm for learning in image retrieval. In: Proceed-
ings of 2001 international conference on image processing, vol 1, pp 34-37

Cheng PC, Yeh JY, Ke HR, Chien BC, Yang WP (2004) NCTU-ISU’s evaluation for the user-
centered search task at ImageCLEF 2004. In: Working notes of the 2004 CLEF workshop. Bath,
England

Cheung CP, Godil A (2010) A shape-based searching system for industrial components. In:
Proceedings of the 15th international conference on web 3D technology, web 3D ’10. ACM,
pp 151-156

Chua CS, Han F, Ho YK (2000) 3D human face recognition using point signature. In: Proceed-
ings of 4th IEEE international conference on automatic face and gesture recognition, 2000, pp
233-238

Chua CS, Jarvis R (1997) Point signatures: a new representation for 3D object recognition. Int
J Comput Vis 25:63-85

Cicirello V, Regli W (2001) Machining feature-based comparisons of mechanical parts. In: SMI
2001 international conference on shape modeling and applications, pp 176-185

Cooke E, Ferguson P, Gaughan G, Gurrin C, Jones GJF, Le H, Lee H, Marlow S, Donald
KM, Mchugh M, Murphy NEN, Rothwell R, Smeaton AF, Wilkins P (2004) Trecvid 2004
experiments in dublin city university. In: Proceedings of the TRECVID 2004 conference

Datta R, Joshi D, Li J, Wang JZ (2008) Image retrieval: ideas, influences, and trends of the new
age. ACM Comput Surv 40(2):1-60

de Alarcén P, Pascual-Montano A, Carazo J (2002) Spin images and neural networks for
efficient content-based retrieval in 3D object databases. In: Lew M, Sebe N, Eakins J (eds)
Image and video retrieval. Lecture notes in computer science, vol 2383. Springer Berlin/
Heidelberg, pp 225-234

Depeursinge A, Foncubierta-Rodriguez A, Van De Ville D, Miiller H (2011) Lung texture
classification using locally-oriented riesz components. In: Fichtinger G, Martel A, Peters T (eds)
Medical image computing and computer assisted intervention—MICCAI 2011. Lecture notes
in computer science, vol. 6893. Springer Berlin/Heidelberg, pp 231-238

Depeursinge A, Miiller H (2010) Fusion techniques for combining textual and visual informa-
tion retrieval. In: Miiller H, Clough P, Deselaers T, Caputo B (eds) ImageCLEF, the springer
international series on information retrieval, vol 32. Springer Berlin Heidelberg, pp 95-114
Depeursinge A, Miiller H (2010) Sensors, medical images and signal processing: comprehensive
multi-modal diagnosis aid frameworks. IMIA Yearb Med Inform 5(1):43-46

Depeursinge A, Racoceanu D, Tavindrasana J, Cohen G, Platon A, Poletti PA, Miiller H (2010)
Fusing visual and clinical information for lung tissue classification in high-resolution computed
tomography. Artif Intell Med 50(1):13-21

Depeursinge A, Vargas A, Gaillard F, Platon A, Geissbuhler A, Poletti PA, Miiller H
(2012) Case-based lung image categorization and retrieval for interstitial lung diseases: clinical
workflows. Int J CARS 7(1):97-110

@ Springer



Mu

Itimed Tools Appl (2014) 69:539-567 561

35

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

. Depeursinge A, Zrimec T, Busayarat S, Miiller H (2011) 3D lung image retrieval using
localized features. In: Medical imaging 2011. Computer-aided diagnosis, vol 7963. SPIE,
p 79632E

Deselaers T, Weyand T, Ney H (2006) Image retrieval and annotation using maximum entropy.
In: Working notes of the 2006 CLEF Workshop. Alicante, Spain

Dinh H, Kropac S (2006) Multi-resolution spin-images. In: IEEE computer society conference
on computer vision and pattern recognition, 2006, vol 1, pp 863-870

Do MN, Vetterli M (2002) Rotation invariant texture characterization and retrieval using
steerable wavelet-domain hidden markov models. IEEE Trans Multimedia 4(4):517-527
Donald K, Smeaton A (2005) A comparison of score, rank and probability-based fusion meth-
ods for video shot retrieval. In: Leow WK, Lew M, Chua TS, Ma WY, Chaisorn L, Bakker
E (eds) Image and video retrieval. Lecture notes in computer science, vol 3568. Springer
Berlin/Heidelberg, pp 592-592

El-Baz A, Casanova M, Gimel'farb G, Mott M, Switala A, Vanbogaert E, McCracken R (2008)
Dyslexia diagnostics by 3D texture analysis of cerebral white matter gyrifications. In: 19th
international conference on pattern recognition, ICPR 2008, pp 1-4

El-Mehalawi M, Miller RA (2003) A database system of mechanical components based on geo-
metric and topological similarity. part ii: indexing, retrieval, matching, and similarity assessment.
Computer-Aided Design 35(1):95-105

Elad M, Tal A, Ar S (2002) Content based retrieval of vrml objects: an iterative and interactive
approach. In: Proceedings of the 6th eurographics workshop on multimedia 2001. Springer-
Verlag New York, Inc., New York, NY, USA, pp 107-118

Fatemi N, Lalmas M, Rolleke T (2004) How to retrieve multimedia documents described by
MPEG-7. In: van Rijsbergen C, Ounis I, Jose J, Ding Y (eds) Semantic web and information
retrieval

Fehr J (2007) Rotational invariant uniform local binary patterns for full 3D volume texture
analysis. In: Finnish signal processing symposium (FINSIG), 2007. Oulu, Finland

Fehr J, Burkhardt H (2008) 3D rotation invariant local binary patterns. In: 19th international
conference on pattern recognition, ICPR 2008, pp 1-4

Ferecatu M, Sahbi H (2008) TELECOM ParisTech at ImageClefphoto 2008: Bi-modal text and
image retrieval with diversity enhancement. In: Working notes of the 2008 CLEF workshop.
Aarhus, Denmark

Flickner M, Sawhney H, Niblack W, Ashley J, Huang Q, Dom B, Gorkani M, Hafner J, Lee D,
Petkovic D, Steele, D, Yanker P (1995) Query by Image and Video Content: the QBIC system.
IEEE Computer 28(9):23-32

Foncubierta-Rodriguez A, Depeursinge A, Miiller H (2012) Using multiscale visual words
for lung texture classification and retrieval. In: Greenspan H, Miiller H, Syeda Mahmood T
(eds) Medical content-based retrieval for clinical decision support, MCBR-CDS 2011, vol 7075.
Lecture notes in computer sciences (LNCS), pp 69-79

Francois R, Fablet R, Barillot C (2003) Robust statistical registration of 3D ultrasound images
using texture information. In: Proceedings of the international conference on image processing,
2003. ICIP 2003, vol 1, pp 581-584

Friedrich JM (2008) Quantitative methods for three-dimensional comparison and petrographic
description of chondrites. Comput Geosci 34(12):1926-1935

Funkhouser T, Min P, Kazhdan M, Chen J, Halderman A, Dobkin D, Jacobs D (2003) A search
engine for 3D models. ACM Trans Graph 22(1):83-105

Gallo L, Pietro GD, Coronato A, Marra I (2008) Toward a natural interface to virtual medical
imaging environments. In: AVI ’08: Proceedings of the working conference on advanced visual
interfaces. New York, NY, USA, pp 429-432

Gao D (2003) Volume texture extraction for 3D seismic visualization and interpretation. Geo-
physics 68(4):1294-1302

Gao D (2004) Texture model regression for effective feature discrimination: application to
seismic facies visualization and interpretation. Geophysics 69(4):958-967

Gao D (2011) Latest developments in seismic texture analysis for subsurface structure, facies,
and reservoir characterization: a review. Geophysics 76(2):1-13

Gao X, Qian Y, Hui R, Loomes M, Comley R, Barn B, Chapman A, Rix J (2010) Texture-based
3D image retrieval for medical applications. In: IADIS multi conference on computer science
and information system (MCCSIS)

Greenspan H, Pinhas AT (2007) Medical image categorization and retrieval for pacs using the
gmm-kl framework. IEEE Trans Inf Technol Biomed 11(2):190-202

@ Springer



562

Multimed Tools Appl (2014) 69:539-567

58

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

71.

78.

. Gruhne M (2007) Mp7qf: an mpeg-7 query format. In: 3rd international conference on auto-
mated production of cross media content for multi-channel distribution, 2007. AXMEDIS ’07,
pp 15-18

Haas M, Rijsdam J, Thomee B, Lew MS (2004) Relevance feedback: perceptual learning
and retrieval in bio-computing, photos, and video. In: Proceedings of the 6th ACM SIGMM
international workshop on multimedia information retrieval, MIR ’04. ACM, New York, NY,
USA, pp 151-156

Hanjalic A, Lagendijk RL, Biemond J (1997) A new method for key frame based video content
representation. In: Eds. World Scientific, pp 97-107

Hanka R, Harte TP (1996) Curse of dimensionality: classifying large multi-dimensional images
with neural networks. In: Proceedings of the European workshop on computer-intensive meth-
ods in control and signal processing (CIMCSP1996). Prague, Czech Republic

Healy DM, Rockmore DN, Kostelec PJ, Moore SSB (2002) FFTs for the 2-Sphere—
improvements and variations. In: Tech. rep. TR2002-419, Dartmouth College, Computer Sci-
ence, Hanover, NH

Hilaga M, Shinagawa Y, Kohmura T, Kunii TL (2001) Topology matching for fully automatic
similarity estimation of 3D shapes. In: Proceedings of the 28th annual conference on computer
graphics and interactive techniques, SIGGRAPH ’01. ACM, New York, NY, USA, pp 203-212
Huisman A, Ploeger LS, Dullens HFJ, Jonges TN, Belien JAM, Meijer GA, Poulin N, Grizzle
WE, van Diest PJ (2007) Discrimination between benign and malignant prostate tissue using
chromatin texture analysis in 3-D by confocal laser scanning microscopy. Prostate 67(3):248—
254

Ip CY, Lapadat D, Sieger L, Regli WC (2002) Using shape distributions to compare solid
models. In: Proceedings of the 7th ACM symposium on solid modeling and applications, SMA
’02. ACM, New York, NY, USA, pp 273-280

Isler V, Wilson B, Bajcsy R (2007) Building a 3D virtual museum of native american baskets.
In: Proceedings 3rd international symposium on 3D data processing, visualization, and trans-
mission, 3D PVT 2006, pp 954-961

Iyengar G, Nock HJ (2003) Discriminative model fusion for semantic concept detection and
annotation in video. In: Proceedings of the 11th ACM international conference on multimedia,
Multimedia "03. ACM, New York, NY, USA, pp 255-258

Jafari-Khouzani K, Soltanian-Zadeh H, Elisevich K, Patel S (2004) Comparison of 2D and 3D
wavelet features for TLE lateralization. In: Amini AA, Manduca A (eds) Medical imaging 2004:
physiology, function, and structure from medical images, vol 5369. SPIE, pp 593-601

Jerram DA, Higgins MD (2007) 3D analysis of rock textures: quantifying igneous microstruc-
tures. Elements 3(4):239-245

Julesz B (1981) Textons, the elements of texture perception, and their interactions. Nature
290(5802):91-97

Kalpathy-Cramer J, Miiller H, Bedrick S, Eggel I, Garcia Seco de Herrera A, Tsikrika T (2011)
The CLEF 2011 medical image retrieval and classification tasks. In: Working notes of CLEF
2011. Cross language evaluation forum

Ketcham RA (2005) Computational methods for quantitative analysis of three-dimensional
features in geological specimens. Geosphere 1(1):32-41

Kim J, Cai W, Feng D, Wu H (2006) A new way for multidimensional medical data manage-
ment: volume of interest (voi)-based retrieval of medical images with visual and functional
features. IEEE Trans Inf Technol Biomed 10(3):598-607

Kim TY, Choi HJ, Hwang H, Choi HK (2010) Three-dimensional texture analysis of renal cell
carcinoma cell nuclei for computerized automatic grading. J Med Syst 34(4):709-716

Kim TY, Choi HK (2009) Computerized renal cell carcinoma nuclear grading using 3D textural
features. In: IEEE international conference on communications workshops, 2009. ICC Work-
shops 2009, pp 1-5

Kontos D, Bakic PR, Carton AK, Troxel AB, Conant EF, Maidment ADA (2009) Parenchymal
texture analysis in digital breast tomosynthesis for breast cancer risk estimation: a preliminary
study. Acad Radiol 16(3):283-298

Korfiatis PD, Kalogeropoulou C, Karahaliou AN, Kazantzi AD, Costaridou LI (2011) Vessel
tree segmentation in presence of interstitial lung disease in MDCT. IEEE Trans Inf Technol
Biomed 15(2):214-220

Kotsiantis SB (2007) Supervised machine learning: a review of classification techniques. In:
Proceeding of the 2007 conference on emerging artificial intelligence applications in computer
engineering: real word Al systems with applications in eHealth, HCI. Information retrieval and
pervasive technologies. IOS Press, Amsterdam, The Netherlands, pp 3-24

@ Springer



Mu

Itimed Tools Appl (2014) 69:539-567 563

79

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.
97.

98.

99.

100.

. Kovalev VA, Kruggel F (2007) Texture anisotropy of the brain’s white matter as revealed by
anatomical MRI. IEEE Trans Med Imag 26(5):678-685

Krefting D, Bart J, Beronov K, Dzhimova OJF, Hartung MAH, Knoch TA, Lingner T, Mo-
hammed Y, Peter K, Rahm E, Sax U, Sommerfeld D, Steinke T, Tolsdorff T, Vossberg M,
Viezens F, Weisbecker A (2009) Medigrid: Towards a user friendly secured grid infrastructure.
Future Gener Comput Syst 25:326-336

Larson M, Newman E, Jones G (2009) Overview of VideoCLEF 2008: automatic generation
of topic-based feeds for dual language audio-visual content. In: Peters C, Deselaers T, Ferro
N, Gonzalo J, Jones G, Kurimo M, Mandl T, Peiias A, Petras V (eds) Evaluating systems for
multilingual and multimodal information access. Lecture notes in computer science, vol 5706.
Springer Berlin/Heidelberg, pp 906-917

Larson M, Newman E, Jones G (2010) Overview of VideoCLEF 2009: New perspectives
on speech-based multimedia content enrichment. In: Peters C, Caputo B, Gonzalo J, Jones
G, Kalpathy-Cramer J, Miiller H, Tsikrika T (eds) Multilingual information access evalu-
ation II. Multimedia experiments. Lecture notes in computer science, vol 6242. Springer
Berlin/Heidelberg, pp 354-368

Lee K, Ho J, Kriegman DJ (2005) Acquiring linear subspaces for face recognition under
variable lighting. IEEE Trans Pattern Anal Mach Intell 27(5):684-698

Lienhart R (2001) Reliable transition detection in videos: a survey and practitioner’s guide. Int
J Image Graph 1:469-486

Lillis D, Toolan F, Mur A, Peng L, Collier R, Dunnion J (2006) Probability-based fusion of
information retrieval result sets. Artif Intell Rev 25:179-191

Loffler J (2000) Content-based retrieval of 3D models in distributed web databases by visual
shape information. In: Proceedings of the IEEE international conference on information visu-
alization, pp 82-87

Lopes R, Ayache A, Makni N, Puech P, Villers A, Mordon S, Betrouni N (2011) Prostate cancer
characterization on MR images using fractal features. Med Phys 38(1):83-95
Marchand-Maillet S (2000) Content-based video retrieval: an overview. In: Tech. rep. 00.06,
CUI—University of Geneva, Geneva, Switzerland

Mariolis I, Korfiatis PD, Costaridou LI, Kalogeropoulou C, Daoussis D, Petsas T (2010) Inves-
tigation of 3D textural features’ discriminating ability in diffuse lung disease quantification in
MDCT. In: IEEE international conference on imaging systems and techniques, IST 2010, pp
135-138

Mezaris V, Kompatsiaris I, Boulgouris N, Strintzis M (2004) Real-time compressed-domain
spatiotemporal segmentation and ontologies for video indexing and retrieval. IEEE Trans
Circuits Syst Video Technol 14(5):606-621

Mitra NJ, Guibas LJ, Pauly M (2006) Partial and approximate symmetry detection for 3D
geometry. ACM Trans Graph 25:560-568

Moénne-Loccoz N, Janvier B, Marchand-Maillet S, Bruno E (2006) Handling temporal hetero-
geneous data for content-based management of large video collections. Multimedia Tools and
Applications 31:309-325

Miiller H, Clough P, Deselaers T, Caputo B (eds) (2010) ImageCLEF—experimental evaluation
in visual information retrieval. In: The springer international series on information retrieval,
vol 32. Springer, Berlin Heidelberg

Miiller H, Kalpathy-Cramer J (2009) Analyzing the content out of context—features and gaps
in medical image retrieval. Int J Healthc Inform Syst Informat 4(1):88-98

Miiller H, Michoux N, Bandon D, Geissbuhler A (2004) A review of content-based image
retrieval systems in medicine—clinical benefits and future directions. Int J Med Informatics
73(1):1-23

Nallapati R (2004) Discriminative models for information retrieval. In: ACM-SIGIR

Nguyen D, Kuhnert L, Jiang T, Thamke S, Kuhnert K (2011) Vegetation detection for out-
door automobile guidance. In: Proceedings of the IEEE international conference on industrial
technology, pp 358-364

Ohbuchi R, Otagiri T, Ibato M, Takei T (2002) Shape-similarity search of three-dimensional
models using parameterized statistics. In: Proceedings of the 10th pacific conference on com-
puter graphics and applications, 2002, pp 265-274

Osada R, Funkhouser T, Chazelle B, Dobkin D (2002) Shape distributions. ACM Trans Graph
21(4):807-832

Paulhac L (2009) Outils et méthodes d’analyse d’images 3D texturées : application a la
segmentation des images échographiques. PhD thesis, Université Francois Rabelais-Tours,
France

@ Springer



564

Multimed Tools Appl (2014) 69:539-567

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

122.

123.
124.

Paulhac L, Makris P, Gregoire JM, Ramel JY (2009) Approche multirésolution pour la segmen-
tation de textures dans les images ultrasonores 3D. In: XXIIe colloque GRETSI (traitement du
signal et des images). Dijon, France

Paulhac L, Makris P, Gregoire JM, Ramel JY (2009) Descripteurs de textures pour la segmen-
tation d’images echographiques 3D. In: ORASIS’09—Congres des jeunes chercheurs en vision
par ordinateur. Trégastel, France

Paulhac L, Makris P, Ramel JY (2008) Comparison between 2D and 3D local binary pattern
methods for characterisation of three—dimensional textures. In: Proceedings of the 5th inter-
national conference on image analysis and recognition, ICIAR °08. Springer-Verlag, Berlin,
Heidelberg, pp 670-679

Pietroni N, Cignoni P, Otaduy MA, Scopigno R (2010) Solid-texture synthesis: a survey. IEEE
Comput Graph Appl 30(4):74-89

Qian Y, Gao X, Loomes M, Comley R, Barn B, Hui R, Tian Z (2011) Content-based retrieval
of 3D medical images. In: The 3rd international conference on eHealth, telemedicine, and social
medicine (¢TELEMED 2011). IARIA, pp. 7-12

Ranguelova E, Quinn A (1999) Analysis and synthesis of three-dimensional Gaussian Markov
random fields. In: Proceedings of the IEEE international conference on image processing, ICIP
99, vol 3, pp 430-434

Reyes-Aldasoro CC, Bhalerao A (2007) Volumetric texture segmentation by discriminant
feature selection and multiresolution classification. IEEE Trans Med Imag 26(1):1-14

Rubner Y, Tomasi C, Guibas LJ (2000) The earth mover’s distance as a metric for image
retrieval. Int J Comput Vis 40(2):99-121

Samir C, Srivastava A, Daoudi M (2006) Three-dimensional face recognition using shapes of
facial curves. IEEE Trans Pattern Anal Mach Intell 28(11):1858-1863

Saupe D, Vrani¢ D (2001) 3D model retrieval with spherical harmonics and moments. In: Radig
B, Florczyk S (eds) Pattern recognition. Lecture notes in computer science, vol 2191. Springer
Berlin/Heidelberg, pp 392-397

Sebe N, Lew MS (2001) Texture features for content-based retrieval. Springer-Verlag, London,
UK, pp 51-85

Shen L, Bai L (2008) 3D Gabor wavelets for evaluating SPM normalization algorithm. Med
Image Anal 12(3):375-383

Shibata T, Suzuki M, Kato T (2004) 3D retrieval system based on cognitive level—human inter-
face for 3D building database. In: Proceedings 2004 international conference on cyberworlds,
CW 2004, pp 107-112

Shilane P, Min P, Kazhdan M, Funkhouser T (2004) The princeton shape benchmark. In: Shape
modeling applications. Genova, Italy, pp 167-178

Sikora T (2001) The mpeg-7 visual standard for content description-an overview. IEEE Trans
Circuits Syst Video Technol 11(6):696-702

Smeulders AWM, Worring M, Santini S, Gupta A, Jain R (2000) Content-based image retrieval
at the end of the early years. IEEE Trans Pattern Anal Mach Intell 22(12):1349-1380

Snoek CG, Worring M (2008) Concept-based video retrieval. Found Trends Inform Retriev
2(4):215-322

Snoek CGM, Worring M, Smeulders AWM (2005) Early versus late fusion in semantic video
analysis. In: Multimedia ’05: proceedings of the 13th annual ACM international conference on
multimedia. ACM, New York, NY, USA, pp 399-402

Sundar H, Silver D, Gagvani N, Dickinson S (2003) Skeleton based shape matching and re-
trieval. In: Shape modeling international, 2003, pp 130-139

Suzuki MT, Kato T, Otsu N (2000) Similarity retrieval of 3D polygonal models using rotation
invariant shape descriptors. In: Proceedings of the IEEE international conference on systems,
man and cybernetics, vol 4, pp 2946-2952

Tangelder JWH, Veltkamp RC (2004) A survey of content based 3D shape retrieval methods.
In: Proceedings—shape modeling international SMI 2004, pp 145-156

Thornley CV, Johnson AC, Smeaton AF, Lee H (2011) The scholarly impact of TRECVid
(2003-2009). J Am Soc Inf Sci Technol 62(4):613-627

Toussaint GT (1978) The use of context in pattern recognition 10(3):189-204

Tsai F, Chang CK, RauJY, Lin TH, Liu GR (2007) 3D computation of gray level co-occurrence
in hyperspectral image cubes. In: Yuille A, Zhu SC, Cremers D, Wang Y (eds) Energy
minimization methods in computer vision and pattern recognition. Lecture notes in computer
science (LNCS), vol 4679. Springer Berlin/Heidelberg, pp 429-440

@ Springer



Multimed Tools Appl (2014) 69:539-567 565

125.

126.

127.

128.

129.

130.

131.

132.

133.

134.

135.

136.

137.

138.

139.

140.

141.

142.

143.

144.

145.

146.

Veltkamp RC, Ruijsenaars R, Spagnuolo M, van Zwol R, ter Haar F (2006) SHREC2006
3D shape retrieval contest. In: Tech. rep., department of information and computing sciences,
Utrecht University

Venkatesh Babu R, Ramakrishnan K (2002) Content-based video retrieval using motion de-
scriptors extracted from compressed domain. In: IEEE International Symposium on Circuits
and systems, 2002. ISCAS 2002, vol 4, pp 1V-141-1V-144. doi:10.1109/ISCAS.2002.1010409
Viaud ML, Buisson O, Saulnier A, Guenais C (2010) Video exploration: from multimedia
content analysis to interactive visualization. In: Proceedings of the international conference on
multimedia, MM °10. ACM, New York, NY, USA, pp 1311-1314

Vranic D, Saupe D (2002) Description of 3D-shape using a complex function on the sphere.
In: Proceedings of the IEEE international conference on multimedia and expo, ICME ’02, vol 1,
pp 177-180

Vranic DV, Saupe D, Richter J (2001) Tools for 3D-object retrieval: Karhunen-loeve transform
and spherical harmonics. In: 2001 IEEE 4th workshop on multimedia signal processing, pp 293—
298

Waksman A, Rosenfeld A (1996) Sparse, opaque three-dimensional texture, 2A: visibility.
Graph Models Image Process 58(2):155-163

Waksman A, Rosenfeld A (1996) Sparse, opaque three-dimensional texture, 2B: photometry.
Pattern Recognit 29(2):297-313

Wang X, Tang X (2004) A unified framework for subspace face recognition. IEEE Trans
Pattern Anal Mach Intell 26(9):1222-1228

Westerveld T, Ianeva T, Boldareva L, de Vries AP, Hiemstra D (2003) Combining informa-
tion sources for video retrieval—the lowlands team at trecvid 2003. In: Proceedings of the
TRECVID 2003 conference

Wong HS, Cheung KK, Ip HH (2004) 3D head model classification by evolutionary optimiza-
tion of the extended gaussian image representation. Pattern Recogn 37(12):2307-2322

von Wyl M, Mohamed H, Bruno E, Marchand-Maillet S (2011) A parallel cross-modal
search engine over large-scale multimedia collections with interactive relevance feedback. In:
Demo at ACM international conference on multimedia retrieval (ACM-ICMR’11). Trento,
Italy

Xu DH, Kurani AS, Furst J, Raicu DS (2004) Run-length encoding for volumetric texture.
In: The 4th IASTED international conference on visualization, imaging, and image
processing—VIIP 2004. Marbella, Spain

Xu Y, Sonka M, McLennan G, Guo J, Hoffman EA (2005) Sensitivity and specificity of 3-D
texture analysis of lung parenchyma is better than 2-D for discrimination of lung pathology in
stage 0 COPD. In: Amini AA, Manduca A (eds) SPIE medical imaging, vol 5746. SPIE, pp 474—
485

Xu Y, Sonka M, McLennan G, Guo J, Hoffman EA (2006) MDCT-based 3D texture clas-
sification of emphysema and early smoking related lung pathologies. IEEE Trans Med Imaging
25(4):464-475

Yang J, Jiang YG, Hauptmann AG, Ngo CW (2007) Evaluating bag-of-visual-words represen-
tations in scene classification. In: Proceedings of the international workshop on multimedia
information retrieval, MIR ’07. ACM, New York, NY, USA, pp 197-206

Yang X, Schuster D, Master V, Nieh P, Fenster A, Fei B (2011) Automatic 3D segmentation
of ultrasound images using atlas registration and statistical texture prior. In: Medical imaging
2011: visualization, image-guided procedures, and modeling, vol 7964. SPIE, p 796432
YouTube (2012) http://www.youtube.com/t/press_statistics. Accessed 14 Mar 2012

van Zaanen M, de Croon G (2004) FINT: find images and text. In: Working notes of the 2004
CLEF workshop. Bath, England

Zhan Y, Shen D (2006) Deformable segmentation of 3-D ultrasound prostate images using
statistical texture matching method. IEEE Trans Med Imag 25(3):256-272

Zhang L, Samaras D (2006) Face recognition from a single training image under arbitrary
unknown lighting using spherical harmonics. IEEE Trans Pattern Anal Mach Intell 28(3):351—
363

Zhao T, Nevatia R (2004) Tracking multiple humans in complex situations. IEEE Trans Pattern
Anal Mach Intell 26(9):1208-1221

Zhou X, Depeursinge A, Miiller H (2010) Information fusion for combining visual and tex-
tual image retrieval. In: 20th IEEE international conference on pattern recognition (ICPR),
pp 1590-1593

@ Springer


http://dx.doi.org/10.1109/ISCAS.2002.1010409
http://www.youtube.com/t/press_statistics

566 Multimed Tools Appl (2014) 69:539-567

Antonio Foncubierta-Rodriguez received the M.Eng. degree in telecommunication engineering at
the University of Seville, Spain in 2009. Since 2007 he worked part-time as a researcher for the
Department of Communications and Signal Processing in the University of Seville. His research was
related to video compression and transmission over mobile networks, leading to a master’s thesis.
Since 2008 he worked on a project on medical image retrieval for the University Hospitals Virgen del
Rocio in Seville. Currently, as a PhD Student at the University of Geneva, he is a research assistant
at University of Applied Sciences Western Switzerland in Sierre, where he works on several swiss
national and EU projects.

Henning Miiller studied medical informatics at the University of Heidelberg from 1992-1997 with a
specialization in signal and image processing. After a diploma thesis in the telemedicine project Chili
he worked for six months at Daimler-Benz research and technology North America in Portland, OR,
with a scholarship of the Carl Duisberg Society. From 1998-2002, he received the PhD degree on
content-based image retrieval at the University of Geneva with a research stay at Monash University
in Melbourne, Australia, in 2001. Since 2002, he has been working at the Medical Informatics Service
at the University Hospitals and the University of Geneva. He started the medical image retrieval
project medGIFT and initiated the medical image retrieval benchmark ImageCLEFmed. Since 2007,
he has been a full professor at the University of Applied Sciences Western Switzerland in Sierre,
while keeping a part-time research position in medical informatics in Geneva. He published over
300 scientific articles, is in the editorial boards of several journals and in the committees of various
conferences. He has initiated several national and international research projects and currently
coordinates the EU project Khresmoi.

@ Springer



Multimed Tools Appl (2014) 69:539-567 567

Adrien Depeursinge received the B.Sc. and M.Sc. degree in electrical engineering at the Swiss
Federal Institute of Technology (EPFL), Lausanne from 2000-2005 with a specialization in signal
and image processing. From 2006-2010, he performed his PhD thesis on medical image analysis
with a focus on texture analysis and content-based image retrieval at the University and University
Hopsitals of Geneva. During his PhD, he visited the Image & Pervasive Access Lab (IPAL) at
the National University of Singapore (NUS). He is currently a research fellow at the University
of Applied sciences Western Switzerland in Sierre and the University and University Hopsitals of
Geneva. Dr. Depeursinge was the recipient of the 2011 GMDS award in medical informatics for his
PhD thesis.

@ Springer



	Retrieval of high-dimensional visual data: current state, trends and challenges ahead
	Abstract
	Introduction
	Methods
	Applications
	Surface-based model retrieval
	Full-support retrieval
	Spatial-only full-support data
	Space and time volumetric data


	Techniques for visual information retrieval
	Visual information description
	High dimensional approaches
	Low dimensional approaches

	Information retrieval
	Fusion of descriptors and retrieved elements
	Early fusion approaches
	Late fusion approaches

	Data representation

	Conclusions and challenges ahead
	References


