Skip to main content
Log in

On-road vehicle tracking using keypoint-based representation and online co-training

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

This paper addresses the issue of tracking an on-road vehicle from images taken by a camera inside a moving platform. Although existing methods have achieved successful results on tracking general objects such as face and pedestrian, when facing complicated road environments, their performance is unsatisfactory. Therefore, a method specialized for on-road vehicle tracking is needed. The proposed tracking method follows “tracking-by-detection” framework and uses co-training to construct a system with increasing learning ability. The method is mainly composed of tracker, detector, and error collector. The tracker uses keypoint matching to estimate the new location from frame to frame. The detector then fine tunes the location by using templates and knowledge-based methods and outputs the bounding box of the vehicle. At last, the error collector catches all possible errors from tracker and detector, and adds them into a dictionary to avoid similar errors in the future. Due to the error collector, the tracker and the detector can reinforce each other during tracking, thus, we also refer to the detector as online detector. This co-training mechanism leads to an efficient offline detector, which employs integrated information, including classified keypoints, templates, and symmetry, to perform “reappearance detection” when object disappears. The proposed method has been successfully validated by performing experiments with an onboard camera mounted on an on-road vehicle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig 9
Fig. 10

Similar content being viewed by others

References

  1. Adam A, Rivlin E, Shimshoni I (2006) Robust fragments-based tracking using the integral histogram. In Proc. of IEEE Conf. Comput Vis and Pattern Recog, pp 798–805. doi:10.1109/CVPR.2006.256

  2. Agarwal S, Awan A, Roth D (2004) Learning to detect objects in images via a sparse, part-based representation. IEEE Trans Pattern Anal Mach Intell 26(11):1475–1490

    Article  Google Scholar 

  3. Agrawal M, Konolige K, Blas MR (2008) CenSurE: Center surround extremas for realtime feature detection and matching. In: In ECCV, pp 102–115

  4. Alahi A, Ortiz R, Vandergheynst P (2012) FREAK: fast retina keypoint. In: In CVPR, pp 510–517

  5. Arulampalam MS, Maskell S, Gordon N, Clapp T (2002) A tutorial on particle filters for online nonliner/nongaussian bayesian tracking. IEEE Trans. Signal Processing, 50(2):174–188.

    Google Scholar 

  6. Avidan S (2004) Support vector tracking. IEEE Trans Pattern Anal Mach Intell 26(8):1064–1072

    Article  Google Scholar 

  7. Avidan S (2007) Ensemble tracking. IEEE Trans Pattern Anal Mach Intell 29(2):261–271

    Article  Google Scholar 

  8. Babenko B, Yang M, Belongie S (2009) Visual tracking with online Multiple Instance Learning. In Proc. of IEEE Conf. Comput Vis and Pattern Recog (CVPR), pp 983–990. doi:10.1109/CVPR.2009.5206737

  9. Bay H, Tuytelaars T, Gool LV (2008) Speeded-up robust features. J. Comput. Vis. Image Underst, 110(3):346–359

    Google Scholar 

  10. Birchfield S (1998) Elliptical head tracking using intensity gradients and color histograms. In Proc. of IEEE Conf. Comput Vis and Pattern Recog, pp 232–237. doi:10.1109/CVPR.1998.698614

  11. Bradski GR (1998) Computer vision face tracking for use in a perceptual user interface. In Proc. 4th Workshop Applications of Computer Vision (WACV), pp. 214–219. doi:10.1109/ACV.1998.732882

  12. Chen A, Zhu M, Wang Y, Xue C (2008) Mean shift tracking combining SIFT. In Proc. of Int. Conf. Signal Processing, pp 1532–1535. doi:10.1109/ICOSP.2008.4697425

  13. Comaniciu D, Ramesh V, Meer P (2003) Kernel-based object tracking. IEEE Trans Pattern Anal Mach Intell 25(5):564–577

    Article  Google Scholar 

  14. Gao T, Li G, Lian S, Zhang J (2011) Tracking video objects with feature points based particle filtering. Multimed Tools Appl 58(1):1–21

    Google Scholar 

  15. Gentile C, Camps O, Sznaier M (2004) Segmentation for robust tracking in the presence of severe occlusion. IEEE Trans Image Process 13(2):166–178

    Google Scholar 

  16. Hager GD, Dewan M, Stewart CV (2004) Multiple kernel tracking with SSD. In: In CVPR, pp 790–797

  17. Harris C, Stephens MJ (1998) A combined corner and edge detector. In: Proc of the 4th Alvey Vision Conf, pp 147–152

  18. Jia X, Lu H, Yang M (2012) Visual tracking via adaptive structural local sparse appearance model. In Proc. of IEEE Conf. Comput Vision and Pattern Recog, pp 1822–1829. doi:10.1109/CVPR.2012.6247880

  19. Kalal Z, Mikolajczyk K, Matas J (2012) Tracking-Learning-Detection. IEEE Trans Pattern Anal Mach Intell 34(7):1409–1422

    Article  Google Scholar 

  20. Kanitkar A, Bharti B, Hivarkar UN (2011) Vision based preceding vehicle detection using self shadows and structural edge features. In Proc. of Int. Conf. Image Information Processing (ICIIP), pp 1–8. doi:10.1109/ICIIP.2011.6108922

  21. Kaucic R, Perera AGA, Brooksby G, Kaufhold J, Hoogs A (2005) A unified framework for tracking through occlusions and across sensor gaps. In Proc. of IEEE Conf. Comput Vis and Pattern Recog, pp 990–997. doi:10.1109/CVPR.2005.53

  22. Levin A, Viola P, Freund Y (2003) Unsupervised improvement of visual detectors using co-training. In Proc. of 9th IEEE Conf. Comput Vis (ICCV), pp 626–633. doi:10.1109/ICCV.2003.1238406

  23. Lin C, Wolf W (2009) MCMC-based feature-guided particle filtering for tracking moving objects from a moving platform. In Proc. of 12th IEEE Conf. Comput Vis (ICCV), pp 828–833. doi:10.1109/ICCVW.2009.5457616

  24. Liu R, Cheng J, Lu H (2009) A robust boosting tracker with minimum error bound in a co-training framework. n Proc. of 12th IEEECconf. Computer Vision (ICCV), pp 1459–1466. doi:10.1109/ICCV.2009.5459285

  25. Liu H, Sun F, He K (2007) Symmetry-aided particle filter for vehicle tracking. In Proc. of IEEE Conf. Robotics and Automation, pp 4633–4638. doi:10.1109/ROBOT.2007.364193

  26. Lopez-Garcia F (2008) SIFT features for object recognition and tracking within the IVSEE system. In Proc. of 19th Int. Conf. Pattern Recog, pp 1–4. doi:10.1109/ICPR.2008.4761150

  27. Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60:91–110

    Article  Google Scholar 

  28. Matas J, Chum O, Urban M, Pajdla T (2002) Robust wide baseline stereo from maximally stable extremal regions. In Proc. British Machine Vision Conference (BMVC), pp 384–393. doi:10.1016/j.imavis.2004.02.006

  29. Paragios N, Deriche R (2000) Geodesic active contours and level sets for the detection and tracking of moving objects. IEEE Trans Pattern Anal Mach Intell 22(3):266–280

    Article  Google Scholar 

  30. Rosten E, Porter R, Drummond T (2010) Faster and Better: a machine learning approach to corner detection. IEEE Trans Pattern Anal Mach Intell 32(1):105–119

    Article  Google Scholar 

  31. Rublee E, Rabaud V, Konolige K, Bradski G (2011) ORB: An efficient alternative to SIFT or SURF. In Proc. of IEEE Conf. Computer Vision (ICCV), pp 2564–2571. doi:10.1109/ICCV.2011.6126544

  32. Shen C, Brooks MJ, Van den Hengel A (2007) Fast global kernel density mode seeking: applications to localization and tracking. IEEE Trans Image Process 16(5):1457–1469

    Article  MathSciNet  Google Scholar 

  33. Shen C, Kim J, Wang H (2010) Generalized kernel-based visual tracking. IEEE Trans Circuits Sys Video Tech 20(1):119–130

    Article  Google Scholar 

  34. Shu G, Dehghan A, Oreifej O, Hand E, Shah M (2012) Part-based multiple-Person tracking with partial occlusion handling. In Proc. of IEEE Conf. Computer Vision and Pattern Recognition, pp 1815–1821. doi:10.1109/CVPR.2012.6247879

  35. Sivaraman S, Trivedi MM (2010) A general active learning framework for on-road vehicle recognition and tracking. IEEE Trans Intell Trans Sys 11(2):267–276

    Google Scholar 

  36. Sun Z, Bebis G, Miller R (2006) Monocular precrash vehicle detection: features and classifiers. IEEE Trans Image Process 15(7):2019–2034

    Article  Google Scholar 

  37. Sun Z, Bebis G, Miller R (2006) On-road vehicle detection: a review. IEEE Trans Pattern Anal Mach Intell 28(5):694–711

    Article  Google Scholar 

  38. Szczuko P (2012) Genetic programming extension to APF-based monocular human body pose estimation. Multimed Tools Appl. doi:10.1007/s11042-012-1147-4

    Google Scholar 

  39. Tang F, Brennan S, Zhao Q, Tao H (2007) Co-tracking using semi-supervised support vector machines. In Proc. of 11th IEEE Conf. Computer Vision (ICCV), pp 1–8. doi:10.1109/ICCV.2007.4408954

  40. Yang S, Xu J, Wang MH (2012) Onboard vehicle detection and tracking using boosted Gabor descriptor and sparse representation. Electron Lett 48(16):995–997

    Article  Google Scholar 

  41. Yilmaz A, Li X, Shah M (2004) Contour-Based object tracking with occlusion handling in video acquired using mobile cameras. IEEE Trans Pattern Anal Mach Intell 26(11):1531–1536

    Article  Google Scholar 

  42. Yu Q, Dinh T, Medioni G (2008) Online tracking and reacquisition using co-trained generative and discriminative trackers. In Proc. of European Conf. Computer Vision (ECCV), pp 678–691

  43. Zhang W, Wu QMJ, Wang G, You X (2012) Tracking and pairing vehicle headlight in night scenes. IEEE Trans Intell Trans Sys 13(1):140–153

    Google Scholar 

  44. Zhou SK, Chellappa R, Moghaddam B (2004) Visual tracking and recognition using appearance-adaptive models in particle filters. IEEE Trans Image Process 13(11):1491–1506

    Article  Google Scholar 

  45. Zhou H, Yuan Y, Shi C (2009) Object tracking using SIFT features and mean shift. Comput vis image underst 123:345–352

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Nature Science Foundation of China (Grant No. 61071162).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuo Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, S., Xu, J., Chen, Y. et al. On-road vehicle tracking using keypoint-based representation and online co-training. Multimed Tools Appl 72, 1561–1583 (2014). https://doi.org/10.1007/s11042-013-1453-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-013-1453-5

Keywords

Navigation