We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content
Log in

Normal-controlled coordinates based feature-preserving mesh editing

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

As a local shape descriptor, normal-controlled coordinates (NCC) are well defined on the boundary vertices of open meshes, and proven being always parallel with the corresponding vertex normals, which means no tangential drift appears in various editing operations. These two properties make NCC outperform the previous differential coordinates in many mesh processing jobs. We develop an implicit editing algorithm based on NCC, which is efficient by subtly using vertex normals. In addition, by exploring the relationship between NCC and the normals of triangular faces, we present a linear method based on NCC to reconstruct a mesh from predefined face normals. It provides another convenient way that users can operate face normals to edit models. Experiments show that NCC perform better than the previous differential coordinates in both effectiveness and efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Alexa M (2002) Recent advances in mesh morphing. Comput Graphics Forum 21(2):173–196

    Article  Google Scholar 

  2. Alexa M (2003) Differential coordinates for local mesh morphing and deformation. Vis Comput 19(2):105–114

    MATH  Google Scholar 

  3. Au O, Tai C, Fu H, Liu L (2005) Mesh editing with curvature flow laplacian. In: Eurographics symposium on geometry processing (computer science technical report)

  4. Au O, Tai C, Liu L, Fu H (2006) Dual Laplacian editing for meshes. IEEE Trans Vis Comput Graph 12(3):386–395

    Article  Google Scholar 

  5. Botsch M, Sorkine O (2008) On linear variational surface deformation methods. IEEE Trans Vis Comput Graph 14(1):213–230 (2008)

    Article  Google Scholar 

  6. Desbrun M, Meyer M, Schröder P, Barr A (1999) Implicit fairing of irregular meshes using diffusion and curvature flow. In: Computer graphics and interactive techniques, pp 317–324

  7. Du H, Qin H Free-form geometric modeling by integrating parametric and implicit PDEs. IEEE Trans Vis Comput Graph 13(3):549–561 (2007)

    Article  Google Scholar 

  8. Floater M (2003) Mean value coordinates. Comput Aided Geom Des 20(1):19–27

    Article  MATH  MathSciNet  Google Scholar 

  9. Fu H, Au O, Tai C (2007) Effective derivation of similarity transformations for implicit Laplacian mesh editing. Comput Graphics Forum 26(1):34–45

    Article  Google Scholar 

  10. Hildebrandt K, Schulz C, Von Tycowicz C, Polthier K (2011) Interactive surface modeling using modal analysis. ACM Trans Graph 30(5):1–11

    Article  Google Scholar 

  11. Huang J, Shi X, Liu X, Zhou K, Wei L, Teng S, et al (2006) Subspace gradient domain mesh deformation. ACM Trans Graph 25(3):1126–1134

    Article  Google Scholar 

  12. Jin S (2005) A comparison of algorithms for vertex normal computation. Vis Comput 21(1):71–82

    Article  Google Scholar 

  13. Karni Z, Freedman D, Gotsman C (2009) Energy-based image deformation. Comput Graphics Forum 28(5):1257–1268

    Article  Google Scholar 

  14. Kilian M, Mitra N, Pottmann H (2007) Geometric modeling in shape space. ACM Trans Graph 26(3):1–8

    Article  Google Scholar 

  15. Kraevoy V, Sheffer A (2006) Mean-value geometry encoding. Int J Shape Model 12(1): 29–46

    Article  MATH  Google Scholar 

  16. Lipman Y, Sorkine O, Cohen-Or D, Levin D, Rössl C, Seidel H (2004) Differential coordinates for interactive mesh editing. In: Shape modeling international, pp 181–190

  17. Lipman Y, Sorkine O, Levin D, Cohen-Or D (2005) Linear rotation-invariant coordinates for meshes. ACM Trans Graph 24(3):479–487

    Article  Google Scholar 

  18. Lipman Y, Levin D, Cohen-Or D (2008) Green coordinates. ACM Trans Graph 27(3):1–10

    Article  Google Scholar 

  19. Nealen A, Sorkine O, Alexa M, Cohen-Or D (2005) A sketch-based interface for detail-preserving mesh editing. ACM Trans Graph 24(3):1142–1147

    Article  Google Scholar 

  20. Robert S, Johannes S, Mark P (2007) Embedded deformation for shape manipulation. ACM Trans Graph 26(3):80

    Article  Google Scholar 

  21. Sheffer A, Kraevoy V (2004) Pyramid coordinates for morphing and deformation. In: International symposium on 3D data processing visualization and transmission, pp 68–75

  22. Sheng B, Meng W, Sun H, Wu E (2013) Sketch-based design for green geometry and image deformation. Multimed Tools Appl 62(3):581–599

    Article  Google Scholar 

  23. Sorkine O (2006) Differential representations for mesh processing. Comput Graphics Forum 25(4):789–807

    Article  Google Scholar 

  24. Sorkine O, Cohen-Or D (2004) Least-squares meshes. In: Shape modeling international, pp 191–199

  25. Sorkine O, Alexa M (2007) As-rigid-as-possible surface modeling. In: ACM SIGGRAPH symposium on geometry processing, pp 109–116

  26. Sorkine O, Lipman Y, Cohen-Or D, Levin D, Alexa M, Rössl C, Seidel H (2004) Laplacian surface editing. In: Symposium on geometry processing, pp 179–188

  27. Sun X, Rosin P, Martin R, Langbein F (2007) Random walks for mesh denoising. In: ACM symposium on solid and physical modeling, pp 11–22

  28. Tangelder JWH, Veltkamp RC (2008) A survey of content based 3D shape retrieval methods. Multimed Tools Appl 39(3):441–471

    Article  Google Scholar 

  29. Taubin G (1995) A signal processing approach to fair surface design. In: Computer graphics and interactive techniques, pp 351–358

  30. Wan X, Jin X (2012) Data-driven facial expression synthesis via Laplacian deformation. Multimed Tools Appl 5(1):109-123

    Article  Google Scholar 

  31. Wang S, Hou T, Su Z, Qin H (2011) Multi-scale anisotropic heat diffusion based on normal-driven shape representation. Vis Comput 27(6–8):429–439

    Article  Google Scholar 

  32. Xu W, Zhou K (2009) Gradient domain mesh deformation: a survey. Comput Sci Technol 24(1):6–18

    Article  Google Scholar 

  33. Xu D, Chen W, Zhang H, Bao H (2006) Multi-level differential surface representation based on local transformations. Vis Comput 22(7):493–505 (2006)

    Article  Google Scholar 

  34. Yagou H, Ohtake Y, Belyaev G (2003) Mesh denoising via iterative alpha-trimming and nonlinear diffusion of normals with automatic thresholding. In: Computer graphics international conference, p 28

  35. Yu Y, Zhou K, Xu D, Shi X, Bao H, Guo B, Shum H (2004) Mesh editing with poisson-based gradient field manipulation. ACM Trans Graph 23(3):644–651

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the anonymous reviewers in the Lab of Computational Geometry, Graphics and Image for their valuable comments and suggestions. This research is supported in part by the Fundamental Research Fund for the Central Universities, National Natural Science Foundation of China - Guangdong Joint Fund grant U0935004, National Natural Science Foundation of China grant 60873181, 91230103, 61190120, 61190121 and 61190125, and the State Key Laboratory of Virtual Reality Technology and Systems, Beihang University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengfa Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, S., Cai, Y., Yu, Z. et al. Normal-controlled coordinates based feature-preserving mesh editing. Multimed Tools Appl 71, 607–622 (2014). https://doi.org/10.1007/s11042-013-1517-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-013-1517-6

Keywords

Navigation