Skip to main content
Log in

3D model retrieval using Bag-of-View-Words

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

The view-based 3D model descriptors, which represent a 3D model using its projected views, have limitations on viewpoints sampling and computational cost. This paper proposes a new 3D model descriptor, called the Bag-of-View-Words (BoVW) descriptor, which describes a 3D model by measuring the occurrences of its projected views. An adaptive clustering method is applied to reduce the redundancy of the projected views of each 3D model. A 3D model is represented by a multi-resolution histogram, which is combined by several BoVW descriptors at different levels. The codebook is obtained by unsupervised learning. We also propose a new pyramid matching method for 3D model comparison. Experimental results demonstrated that our method outperforms several existing 3D model descriptors in respect of retrieval precision and computational cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Ankerst M, Kastenmller G, Kriegel H-P, Seidl T (1999) Nearest neighbor classification in 3D protein databases. In: Proc. ISMB. AAAI Press, pp 34–43

  2. Ansary TF, Daoudi M, Vandeborre J-P (2005) 3D model retrieval based on adaptive views clustering. In: ICAPR

  3. Ansary TF, Daoudi M, Vandeborre J-P (2007) A bayesian 3D search engine using adaptive views clustering. IEEE Trans Multimedia 9(1):78–88

    Article  Google Scholar 

  4. Assfalg J, Bertini M, Del Bimbo A, Pala P (2007) Content-based retrieval of 3D objects using spin image signatures. IEEE Trans Multimedia 9(3):589–599

    Article  Google Scholar 

  5. Buehler C, Bosse M, McMillan L, Gortler S, Cohen M (2001) Unstructured lumigraph rendering. In: Proceedings of the 28th annual conf. on computer graphics and interactive techniques, SIGGRAPH ’01. ACM, New York, NY, USA, pp 425–432

    Chapter  Google Scholar 

  6. Bustos B, Keim DA, Saupe D, Schreck T, Vranić DV (2005) Feature-based similarity search in 3D object databases. ACM Comput Surv 37:345–387

    Article  Google Scholar 

  7. Canny J (1986) A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell 8(6):679–698

    Article  Google Scholar 

  8. Chen D, Tian X, Shen Y, Ouhyoung M (2003) On visual similarity based on 3D model retrieval. In: Computer graphics forum, pp 223–232

  9. Del Bimbo A, Pala P (2006) Content-based retrieval of 3D models. ACM Trans Multimed Comput Commun Appl 2:20–43

    Google Scholar 

  10. Ding K, Liu Y (2012) A probabilistic 3D model retrieval system using sphere image. In: Proceedings of the 11th Asian conference on computer vision, ACCV’11. Springer-Verlag

  11. Ding K, Liu Y (2012) A sketch-based 3D model retrieval system. In: International conference on pattern recognition. Tsukuba, Japan

  12. Eitz M, Richter R, Boubekeur T, Hildebrand K, Alexa M (2012) Sketch-based shape retrieval. ACM Trans Graph (Proceedings TOG) 31(4):31:1–31:10

    Google Scholar 

  13. Funkhouser T, Min P, Kazhdan M, Chen J (2003) A search engine for 3D models. ACM Trans Graph 22(1):83–105

    Article  Google Scholar 

  14. Furuya T, Ohbuchi R (2009) Dense sampling and fast encoding for 3D model retrieval using bag-of-visual features. In: Proceedings of the ACM international conference on image and video retrieval, CIVR 2009. ACM, New York, NY, USA, pp 26:1–26:8

    Chapter  Google Scholar 

  15. Gao Y, Dai Q, Zhang N-Y (2010) 3D model comparison using spatial structure circular descriptor. Pattern Recogn 43(3):1142–1151

    Article  MATH  Google Scholar 

  16. Gao Y, Tang J, Hong R, Yan S, Dai Q, Zhang N, Chua T-S (2012) Camera constraint-free view-based 3-d object retrieval. IEEE Trans Image Process 21(4):2269–2281

    Article  MathSciNet  Google Scholar 

  17. Gao Y, Wang M, Zha Z-J, Tian Q, Dai Q, Zhang N (2011) Less is more: efficient 3D object retrieval with query view selection. IEEE Trans Multimedia 13(5):1007–1018

    Article  Google Scholar 

  18. Gao Y, Wang M, Tao D, Ji R, Dai Q (2012) 3-d object retrieval and recognition with hypergraph analysis. IEEE Trans Image Process 21(9):4290–4303

    Article  MathSciNet  Google Scholar 

  19. Gao Y, Yang Y, Dai Q, Zhang N (2010) 3D object retrieval with bag-of-region-words. In: Proceedings of the international conference on Multimedia, ACM MM 2010. ACM, New York, NY, USA, pp 955–958

    Google Scholar 

  20. Giorgi D, Mortara M, Spagnuolo M (2010) 3D shape retrieval based on best view selection. In: Proceedings of the ACM workshop on 3D object retrieval, 3DOR ‘10. ACM, New York, NY, USA, pp 9–14

    Chapter  Google Scholar 

  21. Gonzalez RC, Woods RE (2001) Digital image processing, 2nd edn. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA

    Google Scholar 

  22. Grauman K, Darrell T (2005) The pyramid match kernel: discriminative classification with sets of image features. In: Tenth IEEE int. conf. on computer vision (ICCV), vol 2, pp 1458–1465

  23. Hamerly G, Elkan C (2003) Learning the k in k-means. In: In neural information processing systems. MIT Press, pp 281–288

  24. Horn BKP (1984) Extended gaussian images. Proc IEEE 72(2):1671–1686

    Article  Google Scholar 

  25. Järvelin K, Kekäläinen J (2000) Ir evaluation methods for retrieving highly relevant documents. In: Proceedings of the 23rd annual international ACM SIGIR conference on research and development in information retrieval, SIGIR ‘00. ACM, New York, NY, USA, pp 41–48

    Chapter  Google Scholar 

  26. Johnson AE, Hebert M (1999) Using spin images for efficient object recognition in cluttered 3D scenes. IEEE Trans Pattern Anal Mach Intell 21(5):433–449

    Article  Google Scholar 

  27. Kang SB, Ikeuchi K (1991) Determining 3D object pose using the complex extended gaussian image. In: Proceedings of IEEE computer society conf. on computer vision and pattern recognition (CVPR), pp 580–585

  28. Kazhdan M, Funkhouser T, Rusinkiewicz S (2003) Rotation invariant spherical harmonic representation of 3D shape descriptors. In: Proceedings of the eurographics/ACM SIGGRAPH symposium on geometry processing. Eurographics association, pp 156–164

  29. Levoy M, Hanrahan P (1996) Light field rendering. In: Proceedings of the 23rd annual conf. on computer graphics and interactive techniques, SIGGRAPH ‘96. ACM, New York, NY, USA, pp 31–42

    Chapter  Google Scholar 

  30. Li B, Godil A, Aono M, Bai X, Furuya T, Li L, Lopez-Sastre R, Johan H, Ohbuchi R, Redondo-Cabrera C, Tatsuma A, Yanagimachi T, Zhang S (2012) Shrec‘12 track: generic 3D shape retrieval. In: Eurographics workshop on 3D object retrieval 2012 (3DOR 2012), pp 119–126

  31. Li B, Johan H (2011) 3D model retrieval using hybrid features and class information. Multimed Tools Appl 1–26

  32. Li B, Schreck T, Godil A, Alexa M, Boubekeur T, Bustos B, Chen J, Eitz M, Furuya T, Hildebrand K, Huang S, Johan H, Kuijper A, Ohbuchi R, Richter R, Saavedra JM, Scherer M, Yanagimachi T, Yoon GJ, Yoon SM (2012) Shrec‘12 track: sketch-based 3D shape retrieval. In: Eurographics workshop on 3D object retrieval, pp 109–118

  33. Lowe DG (1999) Object recognition from local scale-invariant features. In: Proceedings of the 7th IEEE Int. Conf. on computer vision, vol 2, pp 1150–1157

  34. Mademlis A, Daras P, Axenopoulos A, Tzovaras D, Strintzis MG (2008) Combining topological and geometrical features for global and partial 3-d shape retrieval. IEEE Trans Multimedia 10(5):819–831

    Article  Google Scholar 

  35. Ohbuchi R, Furuya T (2008) Accelerating bag-of-features sift algorithm for 3D model retrieval. In: SAMTWorkshop semantic 3-D media, pp 22–30

  36. Ohbuchi R, Furuya T (2009) Scale-weighted dense bag of visual features for 3D model retrieval from a partial view 3D model. In: IEEE 12th international conference on computer vision workshops (ICCV Workshops), pp 63–70

  37. Ohbuchi R, Osada K, Furuya T, Banno T (2008) Salient local visual features for shape-based 3D model retrieval. In: IEEE Int. conf. on shape modeling and applications, pp 93–102

  38. Ohbuchi R, Otagiri T, Ibato M, Takei T (2002) Shape-similarity search of three-dimensional models using parameterized statistics. In: Proceedingsof the pacific graphics, pp 265–274

  39. Osada R, Funkhouser T, Chazelle B, Dobkin D (2001) Matching 3D models with shape distributions. In: International conference on shape modelling and applications, pp 154–166

  40. Pelleg D, Moore A (2000) X-means: extending k-means with efficient estimation of the number of clusters. In: Proceedings of the 17th int. conf. on machine learning. Morgan Kaufmann, pp 727–734

  41. Saupe D, Vranić DV (2001) 3D model retrieval with spherical harmonics and moments. In: DAGM-Symposium. Springer-Verlag, pp 392–397

  42. Shen Y, Chen D, Tian X, Ouhyoung M (2003) 3D model search engine based on lightfield descriptors. In: Eurographics

  43. Shilane P, Min P, Kazhdan M, Funkhouser T (2004) The Princeton Shape Benchmark. In: Proceedings of Shape modeling applications, pp 167–178

  44. Tangelder J, Veltkamp R (2004) A survey of content based 3D shape retrieval methods. In: Proceedings of the shape modeling international(SMI), pp 145–156

  45. Vranić DV (2003) An improvement of rotation invariant 3D-shape descriptor based on functions on concentric spheres. In: Int. conf. image processing (ICIP), pp 757–760

  46. Vranić DV, Saupe D, Richter J (2001) Tools for 3D-object retrieval: karhunen-loeve transform and spherical harmonics. In: IEEE 4th workshop on multimedia signal processing, pp 293–298

  47. Wahl E, Hillenbrand U, Hirzinger G (2003) Surflet-pair-relation histograms: a statistical 3D-shape representation for rapid classification. In: 3DIM’03, pp 474–482

  48. Wong H-S, Ma B, Yu Z, Yeung PF, Ip HHS (2007) 3D head model retrieval using a single face view query. IEEE Trans Multimedia 9(5):1026–1036

    Article  Google Scholar 

  49. Zahn CT, Roskies RZ (1972) Fourier descriptors for plane closed curves. IEEE Trans Comput C-21(3):269–281

    Article  MATH  MathSciNet  Google Scholar 

  50. Zhang D, Lu G (2002) A comparative study of fourier descriptors for shape representation and retrieval. In: Proceedings of 5th Asian conf. on computer vision. Springer, pp 646–651

Download references

Acknowledgements

The authors would like to thank Bo Li for providing the contest results of the SHREC2012 Generic 3D model track, and Professor Greg Hamerly for providing the source code of G-means. The authors would like to thank the reviewers and the editor for their time and valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke Ding.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, K., Wang, W. & Liu, Y. 3D model retrieval using Bag-of-View-Words. Multimed Tools Appl 72, 2701–2722 (2014). https://doi.org/10.1007/s11042-013-1560-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-013-1560-3

Keywords

Navigation