Skip to main content
Log in

Incremental learning patch-based bag of facial words representation for face recognition in videos

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Video-based face recognition is a fundamental topic in image processing and video analysis, and presents various challenges and opportunities. In this paper, we introduce an incremental learning approach to video-based face recognition which efficiently exploits the spatiotemporal information in videos. Face image sequences are incrementally clustered based on their descriptors, and the representative face images of each cluster are picked out. The incremental algorithm of creating facial visual words is applied to construct a codebook using the descriptors of the representative face images. Continuously, with the quantization of the facial visual words, each descriptor extracted from patches is converted into codes, and codes from each region are pooled together into a histogram. The representation of the face image is generated by concatenating the histograms from all regions, which is employed to perform the categorization. In the online recognition, a similarity score matrix and a voting algorithm are employed to judge a face video’s identity. Recognition is performed online while face video sequence is continuous and the proposed method gives nearly realtime feedback. The proposed method achieves a 100 % verification rate on the Honda/UCSD database and 82 % on the YouTube datebase. Experimental results demonstrate the effectiveness and flexibility of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Aggarwal G, Chowdhury A, Chellappa R (2004) A system identification approach for video-based face recognition. In: Proc. ICPR, pp 175–178

  2. Ahonen T, Matas J, He C, Pietikäinen M (2009) Rotation invariant image description with local binary pattern histogram fourier features. Image Anal 5575:61–70

    Article  Google Scholar 

  3. Carnegie RC (2003) Mean-shift blob tracking through scale space. In: Proc. CVPR, pp 234–240

  4. Chang C, Lin C (2011) Libsvm: a library for support vector machines. ACM Trans Intel Syst Technol 2:27

    Google Scholar 

  5. Cui Z, Shan S, Zhang H, Lao S, Chen X (2012) Image sets alignment for video-based face recognition. In: Proc. CVPR, pp 2626–2633

  6. Fan W, Wang Y, Tan T (2005) Video-based face recognition using bayesian inference model. In: Audio-and video-based biometric person authentication, pp 122–130

  7. Fischer M, Ekenel H, Stiefelhagen R (2011) Person re-identification in tv series using robust face recognition and user feedback. Multimed Tools Appl 55(1):83–104

    Article  Google Scholar 

  8. Gkalelis N, Mezaris V, Kompatsiaris I, Stathaki T (2013) Mixture subclass discriminant analysis link to restricted gaussian model and other generalizations. IEEE Trans Neural Netw Learn Syst 24(1):8–21

    Google Scholar 

  9. Gou G, Shen R, Wang Y, Basu A (2011) Temporal-spatial face recognition using multi-atlas and markov process model. In: Proc. international conference on multimedia and expo, pp 1–4

  10. Grauman K, Darrell T (2005) The pyramid match kernel: Discriminative classification with sets of image features. In: Proc. ICPR, vol 2, pp 1458–1465

  11. Hadid A, Pietikainen M (2004) From still image to video-based face recognition: an experimental analysis. In: Proc. automatic face and gesture recognition, pp 813–818

  12. Hall P, Marshall D, Martin R (2000) Merging and splitting eigenspace models. IEEE Trans PAMI 22(9):1042–1049

    Article  Google Scholar 

  13. Hu Y, Mian A, Owens R (2011) Sparse approximated nearest points for image set classification. In: Proc. CVPR, pp 121–128

  14. Huang K, Trivedi M (2002) Streaming face recognition using multicamera video arrays. In: Proc. ICPR, pp 213–216

  15. Kim M, Kumar S, Pavlovic V, Rowley H (2008) Face tracking and recognition with visual constraints in real-world videos. In: Proc. CVPR, pp 1–8

  16. Lazebnik S, Schmid C, Ponce J (2006) Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In: Proc. CVPR, pp 2169–2178

  17. Lee K, Ho J, Yang M, Kriegman D (2003) Video-based face recognition using probabilistic appearance manifolds. In: Proc. CVPR, pp 313–320

  18. Lee K, Ho J, Yang M, Kriegman D (2005) Visual tracking and recognition using probabilistic appearance manifolds. Comput Vis Image Underst 99:303–331

    Article  Google Scholar 

  19. Li Z, Imai J, Kaneko M (2010) Robust face recognition using block-based bag of words. In: Proc. ICPR, pp 1285–1288. IEEE

  20. Liu X, Cheng T (2003) Video-based face recognition using adaptive hidden markov models. In: Proc. CVPR, pp 340–345

  21. Liu L, Wang Y, Tan T (2007) Online appearance model learning for video-based face recognition. In: Proc. CVPR, pp 1–7

  22. Lowe D (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110

    Article  Google Scholar 

  23. Matta F, Dugelay J (2006) Person recognition using human head motion information. In: Articulated motion and deformable objects, pp 326–335

  24. Matta F, Dugelay J (2009) Person recognition using facial video information: a state of the art. J Vis Lang Comput 20(3):180–187

    Article  Google Scholar 

  25. Mian A (2011) Online learning from local features for video-based face recognition. Pattern Recogn 44(5):1068–1075

    Article  MATH  Google Scholar 

  26. Phillips P, Grother P, Micheals R, Blackburn D, Tabassi E, Bone J (2003) Face recognition vendor test 2002 results. Evaluation report

  27. Poh N, Chan C, Kittler J, Marcel S, Mc Cool C, Rua E, Alba Castro J, Villegas M, Paredes R (2010) An evaluation of video-to-video face verification. IEEE Trans Inf Forensics Secur 5(4):781–801

    Article  Google Scholar 

  28. Schneider J, Borlund P (2007) Matrix comparison, part 1: motivation and important issues for measuring the resemblance between proximity measures or ordination results. J Am Soc Inf Sci Technol 58(11):1586–1595

    Article  Google Scholar 

  29. Schwarze T, Riegel T, Han S, Hutter A, Nowak S, Ebel S, Petersohn C, Ndjiki-Nya P (2013) Role-based identity recognition for tv broadcasts. Multimed Tools Appl 63(2):501–520

    Article  Google Scholar 

  30. Seo H, Milanfar P (2010) Training-free, generic object detection using locally adaptive regression kernels. IEEE Trans PAMI 32(9):1688–1704

    Article  Google Scholar 

  31. Shan S, Gao W, Cao B, Zhao D (2003) Illumination normalization for robust face recognition against varying lighting conditions. In: International workshop on analysis and modeling of faces and gestures, pp 157–164

  32. Swain M, Ballard D (1991) Color indexing. Int J Comput Vis 7(1):11–32

    Article  Google Scholar 

  33. Van De Sande K, Gevers T, Snoek C (2009) Evaluating color descriptors for object and scene recognition. IEEE Trans PAMI 32:1582–1596

    Article  Google Scholar 

  34. Vedaldi A, Zisserman A (2010) Efficient additive kernels via explicit feature maps. In: Proc. CVPR, pp 3539–3546

  35. Viola P, Jones M (2001) Rapid object detection using a boosted cascade of simple features. In: Proc. CVPR, p 511. Intel, Microprocessor Research Labs

  36. Yilmazturk M, Ulusoy I, Cicekli N (2013) Online annotation of faces in personal videos by sequential learning. Multimed Tools Appl 63(3):591–613

    Article  Google Scholar 

  37. Zhang L, Chu R, Xiang S, Liao S, Li S (2007) Face detection based on multi-block lbp representation. In: Advances in biometrics, pp 11–18

Download references

Acknowledgements

This work is funded by the National Basic Research Program of China (No. 2010CB327902), the National Natural Science Foundation of China (No. 61005016, No. 61061130560), the National High-tech R&D Program of China (2011AA010502), the Open Projects Program of National Laboratory of Pattern Recognition, and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoxiang Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, C., Wang, Y., Zhang, Z. et al. Incremental learning patch-based bag of facial words representation for face recognition in videos. Multimed Tools Appl 72, 2439–2467 (2014). https://doi.org/10.1007/s11042-013-1562-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-013-1562-1

Keywords

Navigation