Skip to main content
Log in

A new robust and efficient multiple watermarking scheme

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

This paper presents a novel multiple watermarking scheme for copyright protection and authentication. The core idea is to segment the host image into non-overlapping blocks by the means of space filling curve and based on the amount of DCT energy in the blocks. The threshold values are then selected to embed multiple watermarks in different blocks. The watermarks are embedded into the image by modifying the singular values of the blocks. Finally, modified blocks are mapped back to their original positions using inverse space filling curve to get the watermarked image. A reliable extraction algorithm is finally developed for the extraction of watermarks from the distorted image. The feasibility of this method and its robustness against the different kind of attacks are verified by different computer simulations and analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Amat S, Aràndiga F, Donat R, Garcia G, Oehsen MV (2001) Data compression with ENO schemes: a case study. Appl Comput Harmon Anal 11(2):273–288

    Article  MathSciNet  Google Scholar 

  2. Bhatnagar G, Raman B (2009) A new reference watermarking scheme based on DWT-SVD. Comput Stand Inter 31(5):1002–1013

    Article  Google Scholar 

  3. Bhatnagar G, Raman B (2011) A new robust reference logo watermarking scheme. Multimed Tools Appl 52(2):621–640

    Article  Google Scholar 

  4. Bhatnagar G, Raman B, Swaminathan K (2009) Dual watermarking scheme for copyright protection and authentication. J Digit Inf Manag 7(1):2–8

    Google Scholar 

  5. Candes EJ, Donoho DL (2006) A surprisingly effective nonadaptive representation for objects with edges. In: Schumaker LL et al (eds) Curves and surfaces. Vanderbilt University Press, Nashville, TN, pp 105–120

    Google Scholar 

  6. Chen R, Luo Y, Lan Y, Alsharif MR (2013) A new robust digital image watermarking algorithm based on singular value decomposition and independent component analysis. J Con Inf Tech 8(5):530–537

    Google Scholar 

  7. Choi Y, Aizawa K (2000) Digital watermarking using inter-block correlation: extension to JPEG coded domain. In: Proceedings of IEEE international conference information technology: coding and computing, pp 133–138

  8. Cintra RJ, Dimitrov VS, de Oliveira HM, Campello de Souza RM (2009) Fragile watermarking using finite field trigonometrical transforms. Signal Process Image Commun 24(7):587–597

    Article  Google Scholar 

  9. Cohen A, Daubechies I, Guleryuz OG, Orchard MT (2002) On the importance of combining wavelet-based nonlinear approximation with coding strategies. IEEE Trans Inf Theory 48(7):1895–1921

    Article  MathSciNet  Google Scholar 

  10. Cox IJ, Miller ML, Bloom JA, Fridrich J, Kalker T (2008) Digital watermarking and steganography, 2nd edn. Morgan Kaufmann, MA

  11. Djurovic I, Stankovic S, Pitas I (2001) Digital watermarking in the fractional Fourier transformation domain. J Netw Comput Appl 24:167–173

    Article  Google Scholar 

  12. Falzon F, Mallat S (1998) Analysis of low bit rate image coding. IEEE Trans Signal Process 46:1027–1042

    Article  MATH  Google Scholar 

  13. Ganic E, Eskicioglu AM (2004) A DFT-based semi-blind multiple watermarking scheme for images. In: New York metro area networking workshop. The Graduate Center of the City University of New York, NY, pp 1–10

  14. Ghouti L, Bouridane A, Ibrahim M, Boussakta S (2006) Digital image watermarking using balanced multiwavelets. IEEE Trans Signal Process 54(4):1519–1536

    Article  Google Scholar 

  15. Harten A (1989) ENO schemes with subcell resolution. J Comput Phys 83(1):148–184

    Article  MathSciNet  Google Scholar 

  16. Harten A (1993) Discrete multiresolution analysis and generalized wavelets. J Appl Numer Math 12:153–193

    Article  MathSciNet  Google Scholar 

  17. Harten A (1994) Multiresolution representation of cell-averaged data. Technical Report, UCLA CAM Report, pp 94–121

  18. Harten A (1996) Multiresolution representation of data II: general framework. SIAM J Numer Anal 33(3):1205–1256

    Article  MathSciNet  Google Scholar 

  19. Harten A, Engquist B, Osher S, Chakravarthy S (1987) Uniformly high order accurate essentially non-oscillatory schemes III. J Comput Phys 71(2):231–303

    Article  MathSciNet  MATH  Google Scholar 

  20. Hu Y, Kwong S, Huang J (2004) Using invisible watermarks to protect visibly watermarked images. In: Proceedings of international symposium on circuits and systems, vol 5, pp 584–587

  21. Huang W, Gou J (2006) An image fusion-based multi-watermarking algorithm. In: Proceedings of the IEEE international conference on networking, sensing and control, pp 266–269

  22. Kallel M, Lapayre J-C, Bouhlel MS (2007) A multiple watermarking scheme for medical image in the spatial domain. GVIP J 7(1):37–42

    Google Scholar 

  23. Lai C-C, Tsai C-C (2010) Digital image watermarking using discrete wavelet transform and singular value decomposition. IEEE Trans Instrum Meas 59(11):3060–3063

    Article  Google Scholar 

  24. Liu R, Tan T (2002) An SVD-based watermarking scheme for protecting rightful ownership. IEEE Trans Multimed 4(1):121–128

    Article  MATH  Google Scholar 

  25. Liu C-C, Chen W-Y (2006) Multiple-watermarking scheme for still images using the discrete cosine transform and modified code division multiple-access techniques. Opt Eng 45(7):077006

    Article  Google Scholar 

  26. Liu Y, Zhao J (2010) A new video watermarking algorithm based on 1D DFT and Radon transform. Signal Process 90(2):626–639

    Article  Google Scholar 

  27. Lu W, Sun W, Lu H (2012) Novel robust image watermarking based on subsampling and DWT. Multimed Tools Appl 60(1):31–46

    Article  Google Scholar 

  28. Luo W, Heileman GL, Pizano CE (2002) Fast and robust watermarking of JPEG files. In: Proceedings of IEEE Southwest symposium image analysis and interpretation, pp 158–162

  29. Mintzer F, Braudaway GW (1999) If one watermark is good, are more better? In: Proceedings of IEEE international conference on acoustics, speech, and signal processing, vol 4, pp 2067–2069

  30. Mohanty SP, Ramakrishnan KR, Kankanhalli M (1999) A dual watermarking technique for images. In: Proceedings of ACM international conference on multimedia. Orlando, FL, USA, pp 49–51

  31. Peng Z, Liu W (2008) Color image authentication based on spatiotemporal chaos and SVD. Chaos Solitons Fractals 36(4):946–952

    Article  Google Scholar 

  32. Peter PHW, Oscar CA, Yeung YM (2003) A novel blind multiple watermarking technique for images. IEEE Trans Circuits Syst Video Technol 13(8):813–830

    Article  Google Scholar 

  33. Shih FY (2008) Digital watermarking and steganography: fundamentals and techniques. CRC Press, FL

    Book  Google Scholar 

  34. Song C, Sudirman S, Merabti M (2012) A robust region-adaptive dual image watermarking technique. J Vis Commun Image Represent 23(3):549–568

    Article  Google Scholar 

  35. Taoa P, Eskicioglub AM (2004) A robust multiple watermarking scheme in the discrete wavelet transform domain. In: Proceedings of the SPIE: internet multimedia management systems V, vol 5601, pp 133–144

  36. Tsai M-J (2011) Wavelet tree based digital image watermarking by adopting the chaotic system for security enhancement. Multimed Tools Appl 52(2–3):347–367

    Article  Google Scholar 

  37. Wang S, Zheng D, Zhao J, Tam JW, Speranza F (2007) An image quality evaluation method based on digital watermarking. IEEE Trans Circuits Syst Video Technol 17(1):98–105

    Article  Google Scholar 

  38. Yao T, Que DS, Su QT (2013) A dual watermarking algorithm based on chaotic in contourlet-domain. Adv Sci Lett 19(4):1234–1237

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Canada Chair Research Program and the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaurav Bhatnagar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhatnagar, G., Wu, Q.M.J. A new robust and efficient multiple watermarking scheme. Multimed Tools Appl 74, 8421–8444 (2015). https://doi.org/10.1007/s11042-013-1681-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-013-1681-8

Keywords

Navigation