Skip to main content
Log in

An elastic net-based hybrid hypothesis method for compressed video sensing

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Compressed Sensing, an emerging framework for signal processing, can be used in image and video application, especially when available resources at the transmitter side are limited, such as Wireless Multimedia Sensor Networks. For a low-cost and low-power demand, we consider the plain compressive sampling and low sampling rates and propose a Compressed Video Sensing scheme. As a result, most burden of video processing can be shifted to the decoder which employs a hybrid hypothesis prediction method in reconstruction. The Elastic net-based multi-hypothesis mode, one part of the prediction method, combines the multi-hypothesis prediction and the elastic net regression together. And in the process of decoding, either this mode or the single-hypothesis one is implemented based on the threshold which is selected from [1e-11, 1). Both of the prediction modes are carried out in the measurement domain and a residual reconstruction as the final step is executed to accomplish the recovery. According to the performance presented by the simulation results, the proposed multi-hypothesis mode provides a better reconstruction quality than the other multi-hypothesis ones and the proposed scheme outperforms the observed state-of-the-art schemes for compressed-sensing video reconstruction at low sampling rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Akyildiz IF, Melodia T, Chowdhury KR (2007) A survey on wireless multimedia sensor networks. Comput Netw 51(4):921–960

    Article  Google Scholar 

  2. Asif MS, Fernandes F, Romberg J (2011) Low-complexity video compression and compressive sensing. In: Duke workshop http://users.ece.gatech.edu/~sasif/

  3. Baraniuk R, Davenport M, DeVore R, Wakin M (2008) A simple proof of the restricted isometry property for random matrices. Constr Approx 28(3):253–263

    Article  MATH  MathSciNet  Google Scholar 

  4. Boyd S, Parikh N, Chu E, Peleato B, Eckstein J (2011) Distributed optimization and statistical learning via the alternating direction method of multipliers. Found Trends® Mach Learn 3(1):1–122

    Article  Google Scholar 

  5. Candès EJ, Romberg J, Tao T (2006) Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inf Theory 52(2):489–509

    Article  MATH  Google Scholar 

  6. Chen SS, Donoho DL, Saunders MA (2001) Atomic decomposition by basis pursuit. SIAM Rev 43(1):129–159

    Article  MATH  MathSciNet  Google Scholar 

  7. Chen C, Tramel EW, Fowler JE (2011) Compressed-sensing recovery of images and video using multihypothesis predictions. In: Proceedings of the asilomar conference on signals, systems and computers, pp 1193–1198. Pacific Grove, CA

  8. Do TT, Chen Y, Nguyen DT, Nguyen N, Gan L, Tran TD (2009) Distributed compressed video sensing. In: Proceedings of the international conference on image processing, pp 1393–1396. Cairo, Egypt

  9. Donoho DL (2006) Compressed sensing. IEEE Trans Inf Theory 52(4):1289–1306

    Article  MATH  MathSciNet  Google Scholar 

  10. Donoho DL, Tsaig Y, Drori I, Starck J-L (2012) Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit. IEEE Trans Inf Theory 58(2):1094–1121

    Article  MathSciNet  Google Scholar 

  11. Efron B, Hastie T, Johnstone I, Tibshirani R (2004) Least angle regression. Ann Stat 32(2):407–499

    Article  MATH  MathSciNet  Google Scholar 

  12. Fowler JE, Mun S, Tramel EW (2012) Block-based compressed sensing of images and video. Found Trends® Signal Process 4(4):297–416

    Article  Google Scholar 

  13. Friedman J, Hastie T, Tibshirani R (2010) Regularization paths for generalized linear models via coordinate descent. J Stat Softw 33(1):1

    Google Scholar 

  14. Gamper U, Boesiger P, Kozerke S (2008) Compressed sensing in dynamic MRI. Magn Reson Med 59(2):365–373

    Article  Google Scholar 

  15. Girod B, Aaron AM, Rane S, Rebollo-Monedero D (2005) Distributed video coding. Proc IEEE 93(1):71–83

    Article  Google Scholar 

  16. Goldstein T, Setzer S (2010) High-order methods for basis pursuit. UCLA CAM Report, 10–41

  17. Johnson WB, Lindenstrauss J (1984) Extensions of Lipschitz mappings into a Hilbert space. Contemp Math 26(189–206):1

    MathSciNet  Google Scholar 

  18. Jung H, Sung K, Nayak KS, Kim EY, Ye JC (2009) k–t FOCUSS: a general compressed sensing framework for high resolution dynamic MRI. Magn Reson Med 61(1):103–116

    Article  Google Scholar 

  19. Kang L-W, Lu C-S (2009) Distributed compressive video sensing. In: Proceedings of the international conference on acoustics, speech, and signal processing, pp 1169–1172. Taipei, Taiwan

  20. Kyrillidis A, Cevher V (2012) Matrix alps: Accelerated low rank and sparse matrix reconstruction. In: IEEE statistical signal processing workshop, pp 185–188

  21. Lu W, Li T, Atkinson IC, Vaswani N (2011) Modified-cs-residual for recursive reconstruction of highly undersampled functional mri sequences. In: Proceedings of the international conference on image processing, pp 2689–2692. Brussels, Belgium

  22. Mun S, Fowler JE (2009) Block compressed sensing of images using directional transforms. In: Proceedings of the international conference on image processing, pp 3021–3024. Cairo, Egypt

  23. Mun S, Fowler JE (2011) Residual reconstruction for block-based compressed sensing of video. In: IEEE data compression conference. Snowbird, UT, pp 183–192

    Google Scholar 

  24. Needell D, Tropp JA (2009) CoSaMP: iterative signal recovery from incomplete and inaccurate samples. Appl Comput Harmon Anal 26(3):301–321

    Article  MATH  MathSciNet  Google Scholar 

  25. Prades-Nebot J, Ma Y, Huang T (2009) Distributed video coding using compressive sampling. In: Proceedings of the picture coding symposium, pp 1–4. Chicago, IL

  26. Sjöstrand K, Ersbøll B (2012) SpaSM—a Matlab toolbox for sparse statistical modeling. Software available at http://www2.imm.dtu.dk/projects/spasm/

  27. Stankovic V, Stankovic L, Cheng S (2008) Compressive video sampling. In: Proceedings of the European signal processing conference, pp 2–6. Lausanne, Switzerland

  28. Tibshirani R (1996) Regression shrinkage and selection via the lasso. J Roy Stat Soc Ser B 58(1):267–288

    MATH  MathSciNet  Google Scholar 

  29. Tramel EW (2012) Distance-weighted regularization for compressed-sensing video recovery and supervised hyperspectral classification. Ph.D. thesis, Mississippi State University

  30. Tramel EW, Fowler JE (2011) Video compressed sensing with multihypothesis. In: IEEE data compression conference, pp 193–202. Snowbird, UT

  31. Tropp JA, Gilbert AC (2007) Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans Inf Theory 53(12):4655–4666

    Article  MATH  MathSciNet  Google Scholar 

  32. Tzagkarakis G, Woiselle A, Tsakalides P, Starck J-L (2012) Design of a compressive remote imaging system compensating a highly lightweight encoding with a refined decoding scheme. In: Proceedings of the international conference on computer vision theory and applications, pp 24–26. Rome, Italy

  33. Vaswani N (2008) Kalman filtered compressed sensing. In: Proceedings of the international conference on image processing, pp 893–896. San Diego, CA

  34. Vaswani N (2010) LS-CS-residual (LS-CS): compressive sensing on least squares residual. IEEE Trans Signal Process 58(8):4108–4120

    Article  MathSciNet  Google Scholar 

  35. Vaswani N, Lu W (2010) Modified-CS: modifying compressive sensing for problems with partially known support. IEEE Trans Signal Process 58(9):4595–4607

    Article  MathSciNet  Google Scholar 

  36. Wakin M, Laska J, Duarte M, Baron D, Sarvotham S, Takhar D, Kelly K, Baraniuk RG (2006) Compressive imaging for video representation and coding. In: Proceedings of the picture coding symposium. Beijing, China

  37. Wakin MB, Laska JN, Duarte MF, Baron D, Sarvotham S, Takhar D, Kelly KF, Baraniuk RG (2006) An architecture for compressive imaging. In: Proceedings of the international conference on image processing, pp 1273–1276. Atlanta, GA

  38. Waters AE, Sankaranarayanan AC, Baraniuk RG (2011) SpaRCS: Recovering low-rank and sparse rmatrices from compressive measurements. In: Neural Information Processing Systems, pp 1089–1097

  39. Wen Z, Yin W, Goldfarb D, Zhang Y (2010) A fast algorithm for sparse reconstruction based on shrinkage, subspace optimization, and continuation. SIAM J Sci Comput 32(4):1832–1857

    Article  MATH  MathSciNet  Google Scholar 

  40. Ying L, Ming L, Pados DA (2013) Motion-aware decoding of compressed-sensed video. IEEE Trans Circ Syst Video Technol 23(3):438–444

    Article  Google Scholar 

  41. Zou H (2006) The adaptive lasso and its oracle properties. J Am Stat Assoc 101(476):1418–1429

    Article  MATH  Google Scholar 

  42. Zou H, Hastie T (2005) Regularization and variable selection via the elastic net. J Roy Stat Soc B 67(2):301–320

    Article  MATH  MathSciNet  Google Scholar 

  43. Zou H, Zhang HH (2009) On the adaptive elastic-net with a diverging number of parameters. Ann Stat 37(4):1733

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Eric W. Tramel for the helpful discussion on the MH-BCS-SPL method. This work was supported by the National Science Foundation China under grant 60972072 and the 111 Project of China (B08038).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, J., Chen, Y., Qin, D. et al. An elastic net-based hybrid hypothesis method for compressed video sensing. Multimed Tools Appl 74, 2085–2108 (2015). https://doi.org/10.1007/s11042-013-1743-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-013-1743-y

Keywords

Navigation