Skip to main content
Log in

Comparative evaluation of methods for filtering Kinect depth data

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

The release of the Kinect has fostered the design of novel methods and techniques in several application domains. It has been tested in different contexts, which span from home entertainment to surgical environments. Nonetheless, to promote its adoption to solve real-world problems, the Kinect should be evaluated in terms of precision and accuracy. Up to now, some filtering approaches have been proposed to enhance the precision and accuracy of the Kinect sensor, and preliminary studies have shown promising results. In this work, we discuss the results of a study in which we have compared the most commonly used filtering approaches for Kinect depth data, in both static and dynamic contexts, by using novel metrics. The experimental results show that each approach can be profitably used to enhance the precision and/or accuracy of Kinect depth data in a specific context, whereas the temporal filtering approach is able to reduce noise in different experimental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

References

  1. Andersen M, Jensen T, Lisouski P, Mortensen A, Hansen M, Gregersen T, Ahrendt P (2012) Kinect depth sensor evaluation for computer vision applications

  2. Berger K, Meister S, Nair R, Kondermann D (2013) A state of the art report on kinect sensor setups in computer vision. In: Grzegorzek M, Theobalt C, Koch R, Kolb A (eds) Time-of-flight and depth imaging. Sensors, algorithms, and applications. Lecture notes in computer science, vol 8200. Springer, Berlin Heidelberg, pp 257–272

  3. Buades A, Coll B, Morel JM (2005) A non-local algorithm for image denoising. In: IEEE computer society conference on computer vision and pattern recognition, 2005. CVPR 2005, vol 2, pp 60–65. doi:10.1109/CVPR.2005.38

  4. Burrus: RGB Demo project (2011). http://labs.manctl.com/rgbdemo

  5. Camplani M, Salgado L (2012) Efficient spatio-temporal hole filling strategy for kinect depth maps pp 82,900E–82,900E–10

  6. Cerveri P, Pedotti A, Ferrigno G (2003) Robust recovery of human motion from video using kalman filters and virtual humans. Hum Mov Sci 22(3):377–404

    Article  Google Scholar 

  7. Chan D, Buisman H, Theobalt C, Thrun S (2008) A noise-aware filter for real-time depth upsampling. In: ECCV Workshop on multicamera and multimodal sensor fusion algorithms and application

  8. Clark RA, Pua YH, Fortin K, Ritchie C, Webster KE, Denehy L, Bryant AL (2012) Validity of the microsoft kinect for assessment of postural control. Gait Posture 36(3):372–377

    Article  Google Scholar 

  9. Dutta T (2012) Evaluation of the kinect sensor for 3-d kinematic measurement in the workplace. Appl Ergon 43(4):645–649

    Article  Google Scholar 

  10. Essmaeel K, Gallo L, Damiani E, De Pietro G, Dipanda A (2012) Temporal denoising of kinect depth data. In: 2012 Eighth international conference on signal image technology and internet based systems (SITIS), pp 47–52

  11. Frees S, Kessler GD, Kay E (2007) Prism interaction for enhancing control in immersive virtual environments. ACM Trans Comput-Hum Interact 14(1)

  12. Fu J, Shiqi W, Lu Y, Li S, Zeng W (2012) Kinect-like depth denoising. In: 2012 IEEE international symposium on circuits and systems (ISCAS), pp 512–515

  13. Gallo L, Ciampi M, Minutolo A (2010) Smoothed pointing: a user-friendly technique for precision enhanced remote pointing. In: International conference on complex, intelligent and software intensive systems (CISIS), pp 712–717. IEEE

  14. Gallo L, Minutolo A (2012) Design and comparative evaluation of smoothed pointing: a velocity-oriented remote pointing enhancement technique. Int J Hum-Comput Stud 70(4):287–300

    Article  Google Scholar 

  15. Gallo L, Placitelli A, Ciampi M (2011) Controller-free exploration of medical image data: experiencing the kinect. In: 2011 24th international symposium on computer-based medical systems (CBMS), pp 1–6

  16. Hartmann J, Forouher D, Litza M, Kluessendorff JH, Maehle E (2012) Real-time visual slam using fastslam and the microsoft kinect camera. In: 7th German conference on robotics; proceedings of ROBOTIK 2012, pp 1–6

  17. Huhle B, Schairer T, Jenke P, Strasser W (2008) Robust non-local denoising of colored depth data. In: IEEE computer society conference on computer vision and pattern recognition workshops, 2008. CVPRW ’08, pp 1–7. doi:10.1109/CVPRW.2008.4563158

  18. Khoshelham K, Elberink SO (2012) Accuracy and resolution of kinect depth data for indoor mapping applications. Sensors 12(2):1437–1454. doi:10.3390/s120201437

    Article  Google Scholar 

  19. Kopf J, Cohen MF, Lischinski D, Uyttendaele M (2007) Joint bilateral upsampling. ACM Trans Graph 26(3). doi:10.1145/1276377.1276497

  20. Maimone A, Bidwell J, Peng K, Fuchs H (2012) Augmented reality: enhanced personal autostereoscopic telepresence system using commodity depth cameras. Comput Graph 36(7):791–807

    Article  Google Scholar 

  21. Matyunin S, Vatolin D, Berdnikov Y, Smirnov M (2011) Temporal filtering for depth maps generated by kinect depth camera. In: 3DTV conference: the true vision—capture, transmission and display of 3D Video (3DTV-CON), 2011, pp 1–4

  22. Merrell P, Akbarzadeh A, Wang L, Mordohai P, Frahm JM, Yang R, Nister D, Pollefeys M (2007) Real-time visibility-based fusion of depth maps. In: IEEE 11th international conference on computer vision, 2007, ICCV 2007, pp 1–8

  23. Microsoft: Kinect for X-BOX 360 (2011). http://www.xbox.com/en-US/Kinect

  24. Monnich H, Nicolai P, Beyl T, Raczkowsky J, Worn H (2011) A supervision system for the intuitive usage of a telemanipulated surgical robotic setup. In: 2011 IEEE international conference on robotics and biomimetics (ROBIO), pp 449–454

  25. Nguyen C, Izadi S, Lovell D (2012) Modeling kinect sensor noise for improved 3d reconstruction and tracking. In: 2012 second international conference on 3D imaging, modeling, processing, visualization and transmission (3DIMPVT), pp 524–530. doi:10.1109/3DIMPVT.2012.84

  26. Parra-Dominguez G, Taati B, Mihailidis A (2012) 3d human motion analysis to detect abnormal events on stairs. In: 2012 second international conference on 3D imaging, modeling, processing, visualization and transmission (3DIMPVT), pp 97–103

  27. Petschnigg G, Szeliski R, Agrawala M, Cohen M, Hoppe H, Toyama K (2004) Digital photography with flash and no-flash image pairs. ACM Trans Graph 23(3):664–672. doi:10.1145/1015706.1015777

    Article  Google Scholar 

  28. Shotton J, Fitzgibbon A, Cook M, Sharp T, Finocchio M, Moore R, Kipman A, Blake A (2011) Real-time human pose recognition in parts from single depth images. In: Proceedings of the 2011 IEEE conference on computer vision and pattern recognition, CVPR ’11. IEEE Computer Society, Washington, DC, pp 1297–1304

  29. Smisek J, Jancosek M, Pajdla T (2011) 3d with kinect. In: 2011 IEEE international conference on computer vision workshops (ICCV Workshops), pp 1154–1160

  30. Stoyanov T, Louloudi A, Andreasson H, Lilienthal AJ (2011) Comparative evaluation of range sensor accuracy in indoor environments. In: Proceedings of the European conference on mobile robots (ECMR)

  31. Sun T, Neuvo Y (1994) Detail-preserving median based filters in image processing. Pattern Recogn Lett 15(4):341–347

    Article  Google Scholar 

  32. Tomasi C, Manduchi R (1998) Bilateral filtering for gray and color images. In: Sixth international conference on computer vision, 1998, pp 839–846

  33. van Teijlingen W, van den Broek EL, Könemann R, Schavemaker JGM (2012) Towards sensing behavior using the kinect. In: Proceedings of measuring behavior 2012: 8th international conference on methods and techniques in behavioral research. Utrecht, The Netherlands, pp 372–375

  34. Zhang B, Allebach J (2008) Adaptive bilateral filter for sharpness enhancement and noise removal. IEEE Trans Image Process 17(5):664–678

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyis Essmaeel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Essmaeel, K., Gallo, L., Damiani, E. et al. Comparative evaluation of methods for filtering Kinect depth data. Multimed Tools Appl 74, 7331–7354 (2015). https://doi.org/10.1007/s11042-014-1982-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-014-1982-6

Keywords

Navigation