Skip to main content
Log in

Fusion-based edge-sensitive interpolation method for deinterlacing

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

This paper proposes a fusion-based edge-sensitive interpolation method (FEID) for intra-field deinterlacing. The proposed FEID is composed of three steps: (1) region classification by a gradient-based region selection approach, (2) pre-interpolation by a 6-tap fixed coefficient Wiener filter, (3) data fusion by the linear minimum mean square-error estimation (LMMSE) technique. Specifically, three directional neighboring pixel sets are defined in three directions (45°, 90°, and 135°) for every missing pixel. And each set produces an estimate of the pixel to be interpolated with a Wiener filter. With the information that gathered from the three directional neighboring pixel sets, a more robust estimate is obtained by fusing these directional estimates with the LMMSE technique. For fast implementation, we propose a gradient-based region selection approach that classifies a local region into two different classes, Region 1 and Region 2. The LMMSE-based data fusion method is used in Region 1; a fast deinterlacing algorithm is used in Region 2 to reduce the computational complexity. Compared with existing deinterlacing methods, the proposed method FEID improves the visual quality of the interpolated edges while maintaining a higher peak signal-to-noise–ratio (PSNR) level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. 24 Kodak images. Available: http://r0k.us/graphics/kodak. Accessed 20 May 2013

  2. Bellars EB, De Haan G (2000) De-interlacing: a key technology for scan rate conversion. Elsevier, Amsterdam

    Google Scholar 

  3. Chen X, Jeon G, Jeong J (2012) Filter switching interpolation method for deinterlacing. Opt Eng 51(10):107402

    Google Scholar 

  4. Chen PY, Lai YH (2007) A low-complexity interpolation method for deinterlacing. IEICE Trans Inf Syst 90(2):606–608

    Article  MathSciNet  Google Scholar 

  5. Chen T, Wu HR, Yu ZH (2000) Efficient deinterlacing algorithm using edge-based line average interpolation. Opt Eng 39(8):2101–2105

    Article  Google Scholar 

  6. Choi H, Lee C (2011) Motion adaptive deinterlacing with modular neural networks. IEEE Trans Circ Syst Video Technol 21(6):844–849

    Article  Google Scholar 

  7. De Haan G (1998) Deinterlacing—an overview. In:Proc of the IEEE 86(9): 1839–1857

  8. De Haan G (2007) Television display processing: past & future. In: Proceedings of the 2007 I.E. international conference on consumer electronics (ICCE’07) 1–2

  9. El-Khamy SE, Hadhoud MM, Dessouky MI et al. (2004) Optimization of image interpolation as an inverse problem using the LMMSE algorithm. In: Proceedings of the 12th IEEE Mediterranean 1: 247–250

  10. El-Khamy SE, Hadhoud MM, Dessouky MI et al (2005) Efficient implementation of image interpolation as an inverse problem. Digit Signal Process 15(2):137–152

    Article  Google Scholar 

  11. Fan YC, Lin HS, Chiang A, Tsao HW, Kuo CC (2008) Motion compensated deinterlacing with efficient artifact detection for digital television displays. J Disp Technol 4(2):218–228

    Article  Google Scholar 

  12. Karmen EW, Su JK (1999) Introduction to optimal estimation. Springer-Verlag

  13. Kim W, Jin S, Jeong J (2007) Novel intra deinterlacing algorithm using content adaptive interpolation. IEEE Trans Consum Electron 53(3):1036–1043

    Article  Google Scholar 

  14. Michaud F, Le Dinh CT, Lachiver G (1997) Fuzzy detection of edge-direction for video line doubling. IEEE Trans Circ Syst Video Technol 7(3):539–542

    Article  Google Scholar 

  15. Park SJ, Hong SM, Jeong J (2011) Deinterlacing algorithm using direction-oriented inverse-free wiener filtering. Opt Eng 50(6):067014

    Article  Google Scholar 

  16. Park SJ, Jeon G, Jeong J (2010) Computation-aware algorithm selection approach for interlaced-to-progressive conversion. Opt Eng 49(5):057005

    Article  Google Scholar 

  17. Park SJ, Jeong J (2011) Local surface model–based deinterlacing algorithm. Opt Eng 50(1):017004

    Article  MathSciNet  Google Scholar 

  18. Park MK, Kang MG, Nam K, Oh SG (2003) New edge dependent deinterlacing algorithm based on horizontal edge pattern. IEEE Trans Consum Electron 49(4):1508–1512

    Article  Google Scholar 

  19. Poor HV (1994) An introduction to signal detection and estimation. Springer-Verlag

  20. Trocan M, Mikovicova B, Zhanguzin D (2012) An adaptive motion-compensated approach for video deinterlacing. Multimed Tools Appl 61(3):819–837

    Article  Google Scholar 

  21. Wang Z, Bovik AC, Sheikh HR et al (2004) Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process 13(4):600–612

    Article  Google Scholar 

  22. Wang J, Jeon G, Jeong J (2012) Efficient adaptive deinterlacing algorithm with awareness of closeness and similarity. Opt Eng 51(1):017003

    Article  Google Scholar 

  23. Wang J, Jeon G, Jeong J (2013) Deinterlacing using Taylor series expansion and polynomial regression. IEEE Trans Circ Syst Video Technol 23(5):912–917

    Article  Google Scholar 

  24. Wang D, Vincent A, Blanchfield P (2005) Hybrid de-interlacing algorithm based on motion vector. IEEE Trans Circ Syst Video Technol 15(8):1019–1025

    Article  Google Scholar 

  25. Yoo H, Jeong J (2002) Direction-oriented interpolation and its application to de-interlacing. IEEE Trans Consum Electron 48(4):954–962

    Google Scholar 

  26. Zhang L, Wu X (2006) An edge-guided image interpolation algorithm via directional filtering and data fusion. IEEE Trans Image Process 15(8):2226–2238

    Article  Google Scholar 

  27. Zhu Y, Schwartz SC, Orchard MT (2001) Wavelet domain image interpolation via statistical estimation. In: Proceedings of the 2001 I.E. international conference on image processing 3: 840–843

Download references

Acknowledgments

The authors would like to thank the reviewers for their insightful and constructive comments that help improve this paper. This work was supported by the National Science Foundation of China (61234001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Wang, R., Liu, W. et al. Fusion-based edge-sensitive interpolation method for deinterlacing. Multimed Tools Appl 74, 7643–7659 (2015). https://doi.org/10.1007/s11042-014-1997-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-014-1997-z

Keywords

Navigation