Skip to main content
Log in

Use of symmetry in prediction-error field for lossless compression of 3D MRI images

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Three dimensional MRI images which are powerful tools for diagnosis of many diseases require large storage space. A number of lossless compression schemes exist for this purpose. In this paper we propose a new approach for lossless compression of these images which exploits the inherent symmetry that exists in 3D MRI images. First, an efficient pixel prediction scheme is used to remove correlation between pixel values in an MRI image. Then a block matching routine is employed to take advantage of the symmetry within the prediction error image. Inter-slice correlations are eliminated using another block matching. Results of the proposed approach are compared with the existing standard compression techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Amraee S, Karimi N, Samavi S, Shirani S (2011) Compression of 3D MRI images based on symmetry in prediction-error field. In: IEEE international conference on multimedia and expo (ICME)

  2. Bilgin A, Zweig G, Marcellin MW (2000) Three-dimensional image compression with integer wavelet transform. Appl Opt 39:1799–1814

    Article  Google Scholar 

  3. Dey A (2001) Understanding and using context. Pers Ubiquit Comput 5:4–7

    Article  Google Scholar 

  4. DICOM sample image sets, Radiology Department, Geneva University Hospital, Switzerland, Available: http://pubimage.hcuge.ch:8080

  5. Holland PW, Welsch RE (1977) Robust regression using iteratively reweighted least-squares, Communications in Statistics. Theory Methods A6:813–827

    Article  MATH  Google Scholar 

  6. ISO/IEC (2007) Information Technology- JPEG 2000 Image Coding System: Part10-Extensions for threedimensional data (15444-10), ISO/IEC JTC1/SC29/WG1 FDIS

  7. Kim Y, PearlmanWA (1998) Lossless volumetricmedical image compression. In: Proceedings of SPIE’s International Symposium on Optical Science, Engineering, and Instrumentation, pp 305–312

  8. Klappenecker A, May FU, Beth T (1998) Lossless compression of 3D MRI and CT data. In: Proceedings of the SPIE Wavelet Applications in Signal and Imaging, vol 3458

  9. Magnetic Resonance Imaging, MedicineNet, Available: http://www.medicinenet.com

  10. Marcelo GS, Weinberger J, Sapiro G (2000) The LOCO-I lossless image compression algorithm: principles and standardization into JPEG-LS. IEEE Trans Image Processing 9:1309–1324

    Article  Google Scholar 

  11. Memon N, Sippy V, Wu X (1996) A comparison of prediction schemes proposed for a new lossless image compression standard. In: Proceedings of the IEEE International Symposium on Circuits System, vol 2

  12. Memon N, Wu X (1997) Recent developments in context-based predictive techniques for lossless image compression. Comput J 40:127–136

    Article  Google Scholar 

  13. Nosratinia A, et al (1996) Interframe coding of magnetic resonance images. IEEE Trans Med Imaging 15:639–647

    Article  Google Scholar 

  14. Qi X, Tyler JM (2005) A progressive transmission capable diagnostically lossless compression scheme for 3D medical image sets. Inf Sci 175:217–243

    Article  Google Scholar 

  15. Sanchez V, Abugharbieh R, Nasiopoulos P (2009) Symmetry-based scalable lossless compression of 3D medical image data. IEEE Trans Med Imaging 28:1062–1072

    Article  Google Scholar 

  16. Speck D (1995) Fast robust adaptation of predictor weights from min/max neighboring pixels for minimum conditional entropy. In: Proceedings of the IEEE Asilomar Conference on Signals System Computer

  17. Speck D (1995) Proposal for next generation lossless compression of continous-tone still pictures: Activity level classification model (ALCM). ISO Working Document ISO/IEC JTCI/SC29/WGl N198

  18. Srikanth R, Ramakrishnan AG (2005) Contextual encoding in uniform and adaptive mesh-based lossless compression of MR images. IEEE Trans Med Imaging 24:1199–1206

    Article  Google Scholar 

  19. Van Assche S, et al (2000) Exploiting interframe redundancies in the lossless compression of 3D medical images. Data compression conference, p 575

  20. Witten IH, Neal RM, Cleary JG (1987) Arithmetic coding for data compression. Commun ACM 30(6):520–540

    Article  Google Scholar 

  21. Wong Y, Chen T (1996) Compression of medical volumetric data in a video-codec framework. In: Proceedings of the ICASSP

  22. Wu X, Memon N (1997) Context-based, adaptive, lossless image coding. IEEE Trans Commun 45(4):437–444

    Article  Google Scholar 

  23. Wu D, Tan EC (2000) Direct 3D lossless image compression based on region growing. IEEE Electron Lett 36(3):207–208

    Article  Google Scholar 

  24. Yodchanan W (2008) Lossless compression for 3-D MRI data using reversible KT. In: Procceeding of the International Conference on Audio, Language and Image, pp 1560–1564

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Shirani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimi, N., Samavi, S., Amraee, S. et al. Use of symmetry in prediction-error field for lossless compression of 3D MRI images. Multimed Tools Appl 74, 11007–11022 (2015). https://doi.org/10.1007/s11042-014-2214-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-014-2214-9

Keywords

Navigation