Skip to main content
Log in

Score level fusion method based on multiple oblique gradient operators for face recognition

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

The traditional gradient is calculated along y and x axes, and its main object is to obtain vertical and horizontal edges in local image patch. However, there exist a lot of oblique edges in image patch besides vertical and horizontal edges. In order to obtain these oblique edges, we introduce multiple oblique gradient operators. By performing the multiple oblique gradient operators, an image can be transformed into multiple gradient orientation images which display different spatial locality and orientation properties. Each class orientation images are normalized by “z-score” method over the corresponding orientation image set. Then, linear discriminant analysis is performed to extract the corresponding low-dimensional features, and the results are used to compute the corresponding distance scores. The different weighted coefficients are calculated for different orientation images based on training samples. A weighted score fusion method is used to combine different distance scores according to their respective salience. Experimental results show that our methods significantly outperform popular methods, and achieve state-of-the-art performance for difficult problems such as illumination and occlusion-robust face recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ahonen T, Hadid A, Pietikainen M (2006) Face description with local binary patterns: application to face recognition. IEEE Trans Pattern Anal Mach Intell 28(12):2037–2041

    Article  Google Scholar 

  2. An G, Wu J, Ruan Q (2010) Improved gradientface used in face recognition under varying illumination. In 2010 I.E. 10th International Conference on Signal Processing (ICSP). pp.670– 673

  3. Baudat G, Anouar F (2000) Generalized discriminant analysis using a kernel approach. Neural Comput 12:2385–2404

    Article  Google Scholar 

  4. Belhumeur PN, Hespanha JP, Kriegman DJ (1997) Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans Pattern Anal Mach Intell 19(7):711–720

    Article  Google Scholar 

  5. Berker Logoglu K, Saracoglu A, Esen E (2010) Gender classification via gradientfaces. Lect Notes Electr Eng 62:245–251

    Article  Google Scholar 

  6. Calignano F, Vezzetti E (2010) Soft tissue diagnosis in maxillofacial surgery: a preliminary study on three-dimensional face geometrical features-based analysis. Aesthet Plast Surg 34(2):200–211

    Article  Google Scholar 

  7. Cevikalp H, Neamtu M, Wilkes M (2006) Discriminative common vector method with kernels. IEEE Trans Neural Netw 17(6):1550–1565

    Article  Google Scholar 

  8. Chengjun L (2004) Gabor-based kernel PCA with fractional power polynomial models for face recognition. IEEE Trans Pattern Anal Mach Intell 26(5):572–581

    Article  Google Scholar 

  9. Chengjun L, Wechsler H (2002) Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition. IEEE Trans Image Process 11(4):467–476

    Article  Google Scholar 

  10. Chengjun L, Wechsler H (2003) Independent component analysis of Gabor features for face recognition. IEEE Trans Neural Netw 14(4):919–928

    Article  Google Scholar 

  11. Elhamifar E and Vidal R (2011) Robust classification suing structured sparse representation. In Proc. IEEE Int Conf. Comput Vis Pattern Recognit. pp.1873-1879

  12. Freeman WT, Adelson EH (1991) The design and use of steerable filters. IEEE Trans Pattern Anal Mach Intell 13(9):891–906

    Article  Google Scholar 

  13. Georghiades AS, Belhumeur PN, Kriegman DJ (2001) From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans Pattern Anal Mach Intell 23(6):643–660

    Article  Google Scholar 

  14. Goudelis G, Zafeiriou S, Tefas A, Pitas I (2007) Class-specific kernel-discriminant analysis for face verification. IEEE Trans Inf Forensic Secur 2(3):570–587

    Article  Google Scholar 

  15. Goudelis G, Zafeiriou S, Pantic M (2012) Subspace learning from image gradient orientations. IEEE Trans Pattern Anal Mach Intell 34(12):2454–2466

    Article  Google Scholar 

  16. Hanai Y, Nishimura J, Kuroda T (2009) Haar-like filtering for human activity recognition using 3D accelerometer. In 5th IEEE Signal Processing Education Workshop. pp. 675–678

  17. Jain A, Nandakumar K, Ross A (2005) Score normalization in multimodal biometric systems. Pattern Recogn 38(12):2270–2285

    Article  Google Scholar 

  18. Kittler J, Hatef M, Duin R, Matas J (1998) On combining classifiers. IEEE Trans Pattern Anal Mach Intell 20(3):226–239

    Article  Google Scholar 

  19. Lee C-J, Chen T-Y, Sun J-D, Yang T-N (2010) Combining gradientfaces, principal component analysis, and fisher linear discriminant for face recognition. In Sixth International Conference on Networked Computing and Advanced Information Management (NCM). pp.622-625

  20. Lee KC, Ho J, Kriegman DJ (2005) Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans Pattern Anal Mach Intell 27(5):684–698

    Article  Google Scholar 

  21. Lei Y, Chen D, Yuan M, Li Q., Shi Z, (2009) 3D face recognition by surface classification image and PCA. ICMV ’09 2nd International Conference on Machine Vision. pp. 145–149

  22. Leng L, Zhang J, Khurram KM et al (2010) Dynamic weighted discrimination power analysis: a novel approach for face and palmprint recognition in DCT domain. Int J Phys Sci 5(17):2543–2554

    Google Scholar 

  23. Leng L, Zhang J, Xu J, Khurram KM et al (2010) Dynamic weighted discrimination power analysis in DCT domain for face and palmprint recognition. In International Conference on Information and Communication Technology Convergence (ICTC) pp:467–471

  24. Martinez AM and Benavente R (1998) The AR face database. CVC technical report

  25. Phillips PJ, Moon H, Rauss PJ, Rizvi S (2000) The FERET evaluation methodology for face recognition algorithms. IEEE Trans Pattern Anal Mach Intell 22(10):1090–1104

    Article  Google Scholar 

  26. Poh N, Chan CH, Kittler J, Marcel S et al (2010) An evaluation of video-to-video face verification. IEEE Trans Inf Forensic Secur 5(4):781–801

    Article  Google Scholar 

  27. Schiele B, Crowley JL (2000) Recognition without correspondence using multidimensional receptive field histograms. Int J Comput Vis 36(1):31–52

    Article  Google Scholar 

  28. Shin H (2006) 3D face recognition with geometrically localized surface shape indexes. In ICARCV ’06. 9th International Conference. pp. 1–6

  29. Tan X and Triggs B (2007) Enhanced local texture feature sets for face recognition under difficult lighting conditions. In Proc. IEEE Int’l Workshop Analysis and Modeling of Faces and Gestures. pp.168-182

  30. Timo A, Abdenour H and Matti H (2004) Face recognition with local binary patterns. In Proc. Eur Conf. Comput Vis. pp.469-481

  31. Turk M, Pentland A (1991) Eigenfaces for recognition. J Cogn Neurosci 3(1):71–86

    Article  Google Scholar 

  32. Vezzetti E, Calignano F, Moos S (2010) Computer-aided morphological analysis for maxillo-facial diagnostic: a preliminary study. J Plast Reconstr Aesthet Surg 63(2):218–226

    Article  Google Scholar 

  33. Wang Y, Pan G, Wu Z, Wang Y (2006) Exploring face expression effects in 3D face recognition using partial ICP. In Asian Conference on Computer Vision. pp. 581–590

  34. Wright J, Yang A, Ganesh A, Sastry S, Ma Y (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31(2):210–227

    Article  Google Scholar 

  35. Yang J, Frangi AF, Yang J, Zhang D, Jin Z (2005) KPCA plus LDA: a complete kernel fisher discriminant framework for feature extraction and recognition. IEEE Trans Pattern Anal Mach Intell 27(2):230–244

    Article  Google Scholar 

  36. Yang M, Zhang L, Yang J and Zhang D (2011) Robust sparse coding for face recognition. In Proc. IEEE Int Conf. Comput Vis Pattern Recognit. pp.625-632

  37. Yang M, Zhang L, Yang J, Zhang D (2013) Regularized robust coding for face recognition. IEEE Trans Image Process 22(5):1753–1766

    Article  MathSciNet  Google Scholar 

  38. Zhang T, Tang YY, Fang B et al (2009) Face recognition under varying illumination using gradientfaces. IEEE Trans Image Process 18(11):2599–2606

    Article  MathSciNet  Google Scholar 

  39. Zhao W, Chellappa R, Phillips PJ, Rosenfeld A (2003) Face recognition: a literature survey. ACM Comput Surv 34(4):399–485

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous reviewers for their valuable comments and suggestions to improve the quality of this paper. This work was supported by the Special Project on the Integration of Industry, Education and Research of Guangdong Province of China Grant No. 2011B090400477; the Special Project on the Integration of Industry, Education and Research of Zhuhai of China Grant No. 2011A050101005,2012D0501990016; the Key Laboratory Key Technologies R & D Program of Zhuhai of China Grant No. 2012D0501990026.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaokui Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Ding, L. & Wang, Y. Score level fusion method based on multiple oblique gradient operators for face recognition. Multimed Tools Appl 75, 819–837 (2016). https://doi.org/10.1007/s11042-014-2327-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-014-2327-1

Keywords

Navigation