Skip to main content
Log in

Distribution of primary additional errors in fractal encoding method

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Today, fractal image encoding method becomes an effective loss compression method in multimedia without resolution, and its negativeness is that its high computational complexity. So many approximate methods are given to decrease the computation time. So the distribution of error points is valued to research. In this paper, by extracted primary additional error values, we first present a novel fast fractal encoding method. Then, with the extracted primary additional error values, we abstract the distribution of these values. We find that the different distribution of values denotes the different parts in images. Finally, we analyze the experimental results and find some properties of these values. The experimental results also show the effectiveness of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Barnsley MF, Jacquin AE (1988) Application of recurrent iterated function systems to images, in proceedings of the SPIE. Visual Commun Image Process 1001:122–131

    Google Scholar 

  2. Bedford T, Dekking FM, Breeuwer M et al (1994) Fractal coding of monochrome images [J]. Signal Process Image Commun 6(5):405–419

    Article  Google Scholar 

  3. Belloulata K (2005) Fast fractal coding of subbands using a non-iterative block clustering [J]. J Vis Commun Image Represent 16(1):55–67

    Article  Google Scholar 

  4. Bhavani S, Thanushkodi KG (2013) Comparison of fractal coding methods for medical image compression [J]. IET Image Process 7(7):686–693

    Article  Google Scholar 

  5. Chang HT, Kuo CJ (2000) Iteration-free fractal image coding based on efficient domain pool design [J]. Image Process IEEE Trans 9(3):329–339

    Article  MathSciNet  MATH  Google Scholar 

  6. K Falconer (2003) Fractal geometry: mathematical foundations and applications, Second Edition [M]. John Wiley @ Sons, Inc

  7. Goebel K, Kirk WA (1972) A fixed point theorem for asymptotically nonexpansive mappings [J]. Proc Am Math Soc 35(1):171–174

    Article  MathSciNet  MATH  Google Scholar 

  8. He JR, Yi L, Li HM (2014) Self-similar propagation and asymptotic optical waves in nonlinear waveguides [J]. Phys Rev E 90(1):013202

    Article  Google Scholar 

  9. Huffman DA (1952) A method for the construction of minimum redundancy codes [J]. Proc IRE (IEEE) 40(9):1098–1101

    Article  Google Scholar 

  10. Ilday FÖ, Buckley JR, Clark WG et al (2004) Self-similar evolution of parabolic pulses in a laser [J]. Phys Rev Lett 92(21):213902

    Article  Google Scholar 

  11. Jacquin AE (1992) Image coding based on a fractal theory of iterated contractive image transformations. IEEE Trans Image Process 1(1):18–30

    Article  Google Scholar 

  12. Kim CS, Kim RC, Lee SU (1998) Fractal coding of video sequence using circular prediction mapping and noncontractive interframe mapping [J]. Image Process IEEE Trans 7(4):601–605

    Article  Google Scholar 

  13. Kim IK, Park RH (1996) Still image coding based on vector quantization and fractal approximation [J]. Image Process IEEE Trans 15(4):587–597

    Google Scholar 

  14. Lai CM, Lam KM, Siu WC (2003) A fast fractal image coding based on kick-out and zero contrast conditions [J]. Image Process IEEE Trans 12(11):1398–1403

    Article  MathSciNet  Google Scholar 

  15. Li J, Chen G, Chi Z (2002) A fuzzy image metric with application to fractal coding [J]. Image Process IEEE Trans 11(6):636–643

    Article  Google Scholar 

  16. Liu S, Cheng X, Lan C et al (2013) Fractal property of generalized M-set with rational number exponent [J]. Appl Math Comput 220:668–675

    MathSciNet  MATH  Google Scholar 

  17. Liu S, Fu W, Deng H et al (2013) Distributional fractal creating algorithm in parallel environment [J]. Int J Distrib Sensor Netw. doi:10.1155/2013/281707

    Google Scholar 

  18. Liu S, Fu W, Zhao W et al (2013) A novel fusion method by static and moving facial capture [J]. Math Probl Eng. doi:10.1155/2013/503924

    Google Scholar 

  19. Liu M, Liu S, Fu W, et al. (2014) Distributional escape time algorithm based on generalized fractal sets in cloud environment [J]. Chinese Journal of Electronics

  20. Lu J, Ye Z, Zou Y (2013) Huber fractal image coding based on a fitting plane [J]. Image Process IEEE Trans 22(1):134–145

    Article  MathSciNet  Google Scholar 

  21. Mandelbrot BB (1982) The fractal geometry of nature [M]. Freeman W H, San Francisco

    MATH  Google Scholar 

  22. Monro DM, Dudbridge F (1992) Fractal block coding of images [J]. Electron Lett 28(11):1053–1055

    Article  Google Scholar 

  23. Press WH, Schechter P (1974) Formation of galaxies and clusters of galaxies by self-similar gravitational condensation [J]. Astrophys J 187:425–438

    Article  Google Scholar 

  24. Rao KR, Yip P (1990) Discrete cosine transform: algorithms, advantages, applications [M]. Academic press, Boston

  25. Shapiro JM (1993) Embedded image coding using zerotrees of wavelet coefficients [J]. Signal Process IEEE Trans 41(12):3445–3462

    Article  MATH  Google Scholar 

  26. Smart DR (1980) Fixed point theorems [M]. CUP Archive

  27. Turaga DS, Chen Y, Caviedes J (2004) No reference PSNR estimation for compressed pictures [J]. Signal Process Image Commun 19(2):173–184

    Article  Google Scholar 

  28. Wang XY, Wang SG (2008) An improved no-search fractal image coding method based on a modified gray-level transform [J]. Comput Graph 32(4):445–450

    Article  Google Scholar 

  29. Wang XY, Wang YX, Yun JJ (2010) An improved no-search fractal image coding method based on a fitting plane [J]. Image Vis Comput 28(8):1303–1308

    Article  Google Scholar 

  30. Wang XY, Zhang DD (2014) Discrete wavelet transform-based simple range classification strategies for fractal image coding [J]. Nonlinear Dyn 75(3):439–448

    Article  Google Scholar 

  31. Yang G, Liu S (2014) Distributed cooperative algorithm for set with negative integer by fractal symmetrical property. Int J Distrib Sensor Netw. doi:10.1155/2014/398583

    Google Scholar 

  32. Zhang Y, Wang X (2012) Fractal compression coding based on wavelet transform with diamond search [J]. Nonlinear Anal Real World Appl 13(1):106–112

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work is supported by Grants Postgraduate Scientific Research Innovation Foundation of Inner Mongolia [B20141012610Z], Programs of Higher-level talents of Inner Mongolia University [No. 125126, 115117, 135103], Scientific projects of higher school of Inner Mongolia [No. NJZY13004], Natural Science Foundation of Inner Mongolia [No. 2014BS0606, 2014BS0602], National Natural Science Foundation of China [No. 61261019, 61262082].

The authors wish to thank the anonymous reviewers for their helpful comments in reviewing this paper.

Conflict of interest

The authors declare that there are no coflict of interest in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liqiang He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Fu, W., He, L. et al. Distribution of primary additional errors in fractal encoding method. Multimed Tools Appl 76, 5787–5802 (2017). https://doi.org/10.1007/s11042-014-2408-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-014-2408-1

Keywords

Navigation