Skip to main content
Log in

Discriminative transform of receptive field patterns for feature representation

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

As reported by many neurophysiological researches, the receptive field is a basic and significant component in the human visual system. It has various kinds of properties such as orientation-selectivity, correlativity, etc. Motivated by these structural and functional properties, we propose in this paper a novel local image descriptor namely the Discriminative Transform of Receptive Field (DTRF). Specifically, around each sample pixel in the interest region, we define a low-level feature structure called Receptive Field Patterns (RFP) which is further divided into two components: the RFP-Center and RFP-Surround. Then, the local features are extracted based on Local Annular Discrete Cosine Transform (LADCT). At the descriptor construction stage, these features are pooled spatially to mimic the correlative property of receptive field. Image matching and classification experiments on four standard data set demonstrate that the proposed descriptor outperforms the state-of-the-art methods under various types of image transformations such as rotation and scaling changes, viewpoint changes, image blurring, JPEG compression, illumination changes, and image noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Ahonen T, Hadid A, Pietikainen M (2006) Face description with local binary patterns: Application to face recognition. IEEE Trans Pattern Anal Mach Intell 28(12):2037–2041

    Article  MATH  Google Scholar 

  2. Balasubramanian V, Sterling P (2009) Receptive fields and functional architecture in the retina. J Phys 587(12):2753–2767

    Google Scholar 

  3. Chen Y, Anand S, Martinez-Conde S, Macknik SL, Bereshpolova Y, Swadlow HA, Alonso JM (2009) The linearity and selectivity of neuronal responses in awake visual cortex. J Vis 9(9):12

    Article  Google Scholar 

  4. Csurka G, Dance C, Fan L, Willamowski J, Bray C (2004) Visual categorization with bags of keypoints. In Workshop on statistical learning in computer vision. ECCV 1(1-22):1–2

    Google Scholar 

  5. Csurka G, Dance C, Fan L, Willamowski J, Bray C (2004) Visual categorization with bags of keypoints. In: Proceedings IEEE ECCV, vol 1 (1-22), pp 1–2

  6. Fan B, Wu F, Hu Z (2011) Aggregating gradient distributions into intensity orders: a novel local image descriptor. In: Proceedings IEEE CVPR, pp 2377–2384

  7. Fan B, Wu F, Hu Z (2012) Rotationally invariant descriptors using intensity order pooling. IEEE Trans Pattern Anal Mach Intell 34(10):2031–2045

    Article  Google Scholar 

  8. Fei-Fei L, Fergus R, Perona P (2007) Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories. Comput Vis Image Underst 106(1):59–70

    Article  Google Scholar 

  9. Guo Z, Zhang D (2010) A completed modeling of local binary pattern operator for texture classification. IEEE Trans Image Process 19(6):1657–1663

    Article  MathSciNet  Google Scholar 

  10. Hafed ZM, Levine MD (2001) Face recognition using the discrete cosine transform. Int J Comput Vis 43(3):167–188

    Article  MATH  Google Scholar 

  11. Heikkila M, Pietikainen M, Schmid C (2009) Description of interest regions with local binary patterns. Pattern Recognit 42:425–436

    Article  MATH  Google Scholar 

  12. Hubel DH (1963) The visual cortex of the brain. Sci Am 209:54–62

    Article  Google Scholar 

  13. Ke Y, Sukthankar R (2004) PCA-SIFT: a more distinctive representation for local image descriptors. In: Proceedings IEEE CVPR, vol 2, pp 506–513

  14. Lazebnik S, Schmid C, Ponce J (2005) A sparse texture representation using local affine regions. IEEE Trans Pattern Anal Mach Intell 27(8):1265–1278

    Article  Google Scholar 

  15. Liu GH, Li ZY, Zhang L, Xu Y (2011) Image retrieval based on micro-structure descriptor. Pattern Recognit 44(9):2123–2133

    Article  Google Scholar 

  16. Zhang J, Marszaek M, Lazebnik S, Schmid C (2007) Local features and kernels for classification of texture and object categories: A comprehensive study. Int J Comput Vis 73(2):213–238

    Article  Google Scholar 

  17. Lowe DG (2004) Distinctive image features from scale-invariant key-points. Int J Comput Vis 60(2):91–110

    Article  Google Scholar 

  18. Malone BJ, Kumar VR, Ringach DL (2007) Dynamics of receptive field size in primary visual cortex. J Neurophysiol 97(1):407–414

    Article  Google Scholar 

  19. McGugin RW, Gatenby JC, Gore JC, Gauthier I (2013) High-resolution imaging of expertise reveals reliable object selectivity in the fusiform face area related to perceptual performance. Proc Natl Acad Sci 109(42):17063–17068

    Article  Google Scholar 

  20. Mikolajczyk K, Schmid C (2004) Scale and afffine invariant interest point detectors. Int J Comput Vis 60(1):63–86

    Article  Google Scholar 

  21. Mikolajczyk K, Schmid C (2005) A performance evaluation of local descriptors. IEEE Trans Pattern Anal Mach Intell 27(10):1615–1630

    Article  Google Scholar 

  22. Mikolajczyk K, Tuytelaars T, Schmid C, Zisserman A, Matas J, Schaffalitzky F, Kadir T, Gool LV (2004) A comparison of affine region detectors. Int J Comput Vis 65(1-2):43–72

    Article  Google Scholar 

  23. Murala S, Maheshwari RP, Balasubramanian R (2012) Local tetra patterns: a new feature descriptor for content-based imagen retrieval. IEEE Trans Image Process 21(5):2874–2886

    Article  MathSciNet  Google Scholar 

  24. Nister D, Stewenius H (2006) Scalable recognition with a vocabulary tree. IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2:2161–2168

    Google Scholar 

  25. Ojala T, Pietikainen M, Harwood D (1996) A comparative study of texture measures with classification based on feature distributions. Pattern Recognit 29(1):51–59

    Article  Google Scholar 

  26. Pillow JW, Shlens J, Paninski L, Sher A, Litke AM, Chichilnisky EJ, Simoncelli EP (2008) Spatio-temporal correlations and visual signalling in a complete neuronal population. Nature 454(7207):995–999

    Article  Google Scholar 

  27. Saha S (2000) Image compressionfrom DCT to wavelets: a review. Crossroads 6(3):12–21

    Article  Google Scholar 

  28. Shadlen MN, Newsome WT (1998) The variable discharge of cortical neurons: implications for connectivity, computation, and information coding. J Neurosci 18(10):3870–3896

    Google Scholar 

  29. Shu Y, Wang T, Shao G, Liu F, Feng Q (2014) DTRF: A Physiologically Motivated Method for Image Description. In: Proceedings IEEE ICIP, pp 5601–5605

  30. Tola E, Lepetit V, Fua P (2010) Daisy: An efficient dense descriptor applied to wide-baseline stereo. IEEE Trans Pattern Anal Mach Intell 32(5):815–830

    Article  Google Scholar 

  31. Tsao DY, Freiwald WA, Tootell RBH, Livingstone MS (2006) A cortical region consisting entirely of face-selective cells. Science 311(5761):670–674

    Article  Google Scholar 

  32. Tuytelaars T, Van Gool L (2004) Matching Widely Separated Views Based on Affine Invariant Regions. Int J Comput Vis 59(1):61–85

    Article  Google Scholar 

  33. Wang Z, Fan B, Wu F (2011) Local intensity order pattern for feature description. In: Proceedings IEEE ICCV, pp 603–610

  34. Winder S, Hua G, Brown M (2009) Picking the best daisy. In: Proceedings IEEE CVPR, pp 178–185

  35. Winder SAJ, Brown M (2007) Learning local image descriptors. In: Proceedings IEEE CVPR, pp 1–8

  36. Zhou X, Cui N, Li Z, Liang F, Huang TS (2009) Hierarchical gaussianization for image classification. In: Proceedings IEEE ICCV, pp 1971–1977

Download references

Acknowledgment

This work is partially supported by the National Natural Science Foundation of China(Grant 61073094 and U1233119).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yucheng Shu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shu, Y., Wang, T., Shao, G. et al. Discriminative transform of receptive field patterns for feature representation. Multimed Tools Appl 75, 7495–7517 (2016). https://doi.org/10.1007/s11042-015-2673-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-015-2673-7

Keywords

Navigation